
CS 10A – PROGRAMMING LOGIC PART 1

Logic Handling in any programming language, If/Else

Allen Zhao - SRJC CS 10A

Making Decisions

▪ Computers have to be able to make decisions in order for

them to be useful.

▪ Computers do logic at a binary level, but in higher level

languages like C/C++, logic can be more explicitly stated

by users for the ease of convenience.

▪ The if/else statement is the basic building block for all

decision making.

▪ Else if statements can be added to increase the number

of possible decisions within a single logic block.

Allen Zhao - SRJC CS 10A

If/Else If/Else

int main()

{

if(/* logic statement goes here*/)

// This line executes if true. Otherwise, this statement is skipped.

else if(/* logic goes here */) // A group of commands following a logic statement can be referred to as a block.

{

// If the else if is true, then all items within the brackets are executed. Without brackets, only the first line

// following the logic statement is executed (or else completely breaks your program).

}

else

// Executes if none of the above statements are true

// Else if and Else statement blocks are optional. Statement blocks that turn out false are skipped.

// You can use just an if statement or as many else if statements as needed

// If a statement is true in multiple places, then only the first true statement block is executed. The rest are skipped.

return 0;

}

Allen Zhao - SRJC CS 10A

Designing Logic Blocks

int main()

{

if(0) // Every if statement starts a new logic block

cout << “No output” << endl;

if(0) // Choose carefully on whether or not if statements should be connected to each other via else statements

cout << “No output” << endl;

else if(1) // Else if statements within one block render all logic statements in that block mutually exclusive

cout << “Output” << endl;

else if(0) // One logic block executes on one set of statements or nothing at all

cout << “No output” << endl;

if(1) // Multiple if statements mean multiple sets of logic can execute simultaneously in one run

cout << “Output” << endl;

else // Else statements guarantee that logic block to always execute on one set of commands

cout << “No output” << endl;

return 0;

}

Allen Zhao - SRJC CS 10A

Logic Statements and Analysis

▪ In C/C++, any non-zero value is considered True. Only 0

is considered False.

▪ You can use any variable type to stand as a Boolean (as

it is in C). In C++, you can use the type bool. Boolean

variables are always defined as true or false.

▪ Logic can be evaluated using comparative operators:

Allen Zhao - SRJC CS 10A

Symbol Definition Symbol Definition

< Less than <= Less than or equal to

> Greater than >= Greater than or equal to

== Equal to != Not equal to

Logic Statements in C/C++

int i0 = 5, i1 = 9, x;

string str0 = “Moon”, str1 = “moon”; // strings are case-sensitive

int main()

{

x = (i0 > i1); // After this, x = 0

i0 < i1; // Statement returns 1, does nothing

str0 == str1; // Statement returns 0, does nothing

x = str0 != str1; // Parentheses not necessary, x = 1

return 0;

}

Allen Zhao - SRJC CS 10A

Logical Operators vs. Bitwise Operators

▪ ~, &, |, and ^ are all known as bitwise operators as they

are intended to be used for Boolean Algebra.

▪ Their logic equivalents are !, &&, and ||, respectively.

There is no equivalent for XOR. They’re specifically for

handling Boolean LOGIC rather than Algebra.

▪ Make sure you use the right symbol for a given context!

Since any non-zero value is considered true, using the

bitwise operators will often return the wrong result.

Allen Zhao - SRJC CS 10A

Combining Logic Statements

int i0 = 3, i1 = 4;

bool ex_bool0 = true, ex_bool1 = false, ex_bool2;

int main()

{

if(i0 < i1 && ex_bool0)

// This line should execute

if(i0 >= i1 || !ex_bool1)

// This line should also execute. If this was an else if statement,

// then it would be linked to the above if statement and skipped

ex_bool2 = i0 && i1; // true with &&, false with &

return 0;

}

Allen Zhao - SRJC CS 10A

Full Program Using Logic

Program

int i0 = 7, i1 = 8;

bool ex_bool0 = true, ex_bool1 = false;

int main()

{

if(i0 < i1)

cout << “i0 is less than i1\n”;

else

cout << “Skipped\n”;

if(ex_bool1)

cout << “Skipped\n”;

else if(ex_bool0 && i0 < i1)

cout << “Statement is true\n”;

return 0;

}

Console

➢ ./a.exe

i0 is less than i1

Statement is true

Allen Zhao - SRJC CS 10A

Tips on Creating Logic Conditions

▪ You can use any sort of variables to create logic conditions,
not just bool. You can even use numbers in place of an actual
logic condition. Remember that only 0 is false.

▪ int, float, and double can all be directly compared using the
comparative operators.

▪ char can be directly compared just like numbers. Remember
to use single quotes to state characters.
 if(ch0 > ‘a’) // is ASCII of ch0 is greater than ASCII of a?

▪ string can only use ==. Remember that strings need double
quotes to be used in C/C++.
 if(rating == “PG-13”) // is the string variable rating “PG-13”?

Allen Zhao - SRJC CS 10A

Tips on Minimizing Logic

▪ Logic statements can be combined or nested in order to
minimize the size of the code.

▪ Recommended practices are using OR to combine
multiple logic statements that lead to the same actions.

 if(bool0 || bool1 || bool2 && bool3 || x > y && bool4)

 This example combines 4 unique sets of conditions that, if any one
of them were true, the command(s) below would execute.

▪ Condition statements can be nested: logic statements
used within logic statements. Similar to using && but has
the advantage of allowing inclusion of intermediary steps.

Allen Zhao - SRJC CS 10A

Minimizing Logic

int x = 0; char ch0 = ‘a’; string str0 = “check”;

int main()

{

if(x < 1)

{

// You can insert additional commands here to take place if it’s not dependent on the second if statement

if(ch0 == ‘a’)

{

// This second internal if statement is also known as a nested if statement

}

// Commands here take place regardless of the above condition, but only after the if statement has been checked

}

else if(str0 == “CHECK” || x > 1 || ch0 > ‘a’ && x == 1)

{

// There are three conditions in this else if statement. Only one needs to be true to trigger the events here.

}

return 0;

}

Allen Zhao - SRJC CS 10A

Logic Statements Are Not Math Statements!

int main()

{

int x;

cin >> x; // You have to be very specific when writing logic statements for value ranges

if(10 < x < 20) // This compiles, but is functionally incorrect due to syntax rules

{

// When read left to right, the program sees 10 < x first, which becomes 1 or 0

// Because both are less than 20, the above statement will ALWAYS be True

}

if(x > 10 && x < 20) // This is the correct version of the above

{

// Each logic statement in assessed independently, then compared with &&

}

return 0;

}

Allen Zhao - SRJC CS 10A

The Conditional Operator

▪ In the case of very simplistic if/else statements, use of a
conditional operator (?) can condense four lines into one.

▪ Syntax is as follows:

 Condition ? Execute this if true : execute this if false;

 The line to execute can be a command or a value to return

 x > y ? y++ : x++; // If x > y, do y++. Otherwise, do x++.

 int a = (x > y) ? 0 : 3; // If x > y, assign 0 to a. Otherwise, a = 3.

 Parentheses will make condition statements easier to read, but
are usually unnecessary since ? has a low precedence.

 Conditionals can be nested to be as complicated as need be.

Allen Zhao - SRJC CS 10A

Using the Conditional Operator

Program

int x = 1, y = 2, i;

int main()

{

i = (x == 2) ? ++x : ++y;

cout << i << endl;

y == 2 ?

(cout << “y is 2”) :

(cout << “y is not 2”) ;

// Semicolons are not allowed within the true

// or false blocks of the conditional

// y is 3 because ++y acts as y = y+1

cout << endl;

return 0;

}

Console

➢ ./a.exe

3

y is not 2

Allen Zhao - SRJC CS 10A

Nested Conditional Operators

int main()

{

x <= y ? (x < y ? x++ : x--) : y++;

// You can nest as many or as few statements as you want, in any position.

// This can mimic the effects of using else if statements or other combinational logic.

/* The above conditional is equivalent to the code block below

if(x == y)

x--;

else if(x < y)

x++;

else

y++;

*/

return 0;

}

Allen Zhao - SRJC CS 10A

	Slide 1: CS 10A – Programming Logic Part 1
	Slide 2: Making Decisions
	Slide 3: If/Else If/Else
	Slide 4: Designing Logic Blocks
	Slide 5: Logic Statements and Analysis
	Slide 6: Logic Statements in C/C++
	Slide 7: Logical Operators vs. Bitwise Operators
	Slide 8: Combining Logic Statements
	Slide 9: Full Program Using Logic
	Slide 10: Tips on Creating Logic Conditions
	Slide 11: Tips on Minimizing Logic
	Slide 12: Minimizing Logic
	Slide 13: Logic Statements Are Not Math Statements!
	Slide 14: The Conditional Operator
	Slide 15: Using the Conditional Operator
	Slide 16: Nested Conditional Operators

