
CS 10A – MATH, TIME, AND RNG

How time and randomness work in programming, and how to use the math library

Allen Zhao – SRJC CS 10A



External Libraries – Quick Review

▪ <iostream>, <iomanip>, and <string> are all C++ libraries, also 
sometimes known as header files.

▪ Libraries are groups of functions, constants, and sometimes 
custom data types designed for a specific purpose, and are 
brought in via the #include command in your code.

▪ A library is a separate code file that exists elsewhere on your 
computer. The computer must know exactly where it is in order to 
use it. If your compiler is complaining about an unrecognized 
library name, then either you made a typo, the compiler needs 
reinstalling, or you can manually locate it.

▪ Modern IDEs and compliers all include the most commonly used 
libraries in their base installation, allowing us to use them with just 
the include statement.

SRJC - CS 10A - Allen Zhao



The Math Library

▪ The math library, <cmath>, is exactly what it sounds like. 

It’s a convenient library that makes a ton of different math 

operations available for use in C++.

▪ The math library is actually really big, so the next slide will 

only cover the common stuff that you’ll likely use from the 

math library. Other functions can be found online.

▪ By default, every function in the math library uses double 

for input and output, but you can use of long double or 

float instead if you wish and maintain that accuracy.

SRJC - CS 10A - Allen Zhao



Common Math Functions and Constants

▪ sin(x) – sine function, where x is in radians

▪ asin(x) – arc sine function, reports back in radians

▪ exp(x) – natural exponential function, does ex

▪ log(x) – natural logarithm function, so log base e

▪ log10(x) – common logarithm function, so log base 10

▪ pow(x, y) – standard exponential function, does xy

▪ sqrt(x) – square root function

▪ ceil(x) – rounds x up to the next closest integer

▪ floor(x) – rounds x down to the next closest integer

▪ abs(x) – get the absolute value of x

▪ NAN – reserved constant name representing not-a-number, usually infinite

▪ M_PI – reserved constant name representing pi

SRJC - CS 10A - Allen Zhao



Math Library Functions - Examples

#include <cmath>

double x = 1, y;

int main()

{

y = cos(x*M_PI/180.0); // cosine via degrees

y = pow(x, 1.0/3); // cube root, remember int division rules

y = log(0); // printing this out will either get you inf or nan

y = exp(1); // do this to get the constant e by itself

return 0;

}

SRJC - CS 10A - Allen Zhao



How Computers Keep Time

▪ Time keeping is critical for synchronizing computer systems and 
keeping critical calculations accurate.

▪ For the common modern day computer, time keeping is done in 
seconds. Local time keeping accuracy is dependent on the CPU.

▪ For offline hardware, time is usually tracked as how many 
milliseconds or seconds have passed since the hardware turned 
on. Computers often use back up batteries to keep the clock 
ticking when the computer is disconnected from power.

▪ A single signed integer in computer memory keeps track of time by 
counting the number of seconds that have passed since the 
Epoch (defined as midnight on Jan. 1, 1970 UTC). This is the 
timekeeping standard defined by UNIX systems, so it’s often 
known as UNIX time.

SRJC - CS 10A - Allen Zhao



Y2K and the Year 2038 Bug

▪ Back in the day, when memory was more limited, time was tracked 
in a more fragmented fashion. In particular, the year was just 
represented as a two digit number.

▪ Once 99 rolled over back to 00, major systems everywhere at the 
time would read that as 1900 rather than 2000. System crashes 
for critical infrastructure were definitely possible, but likely not 
world-ending like the media made it out to be at the time.

▪ Any potential disaster was averted because most computer 
systems were updated to change their time keeping system to our 
current model before the dawn of the new millennium.

▪ Due to the limits of the signed int, the next Y2K-like event is on 
1/19/2038, 3:14:08 AM UTC

SRJC - CS 10A - Allen Zhao



The Time Library

▪ The time library, <ctime>, allows us to track time in our 

code. As such, it’s also a handy way to also track 

resource consumption and program performance.

▪ Alternatively, you can use the time library any time a 

calendar is needed. The time library contains additional 

data types and functions that converts between UNIX 

time and the Gregorian calendar format we use.

▪ The time library is also a highly recommended component 

in random number generation.

SRJC - CS 10A - Allen Zhao



Some Time Library Functions and Constants

▪ clock() – returns how much processor time was used by 

the program, a -1 is returned if the function fails. Units are 

in clock ticks, an arbitrary unit whose definition can vary. 

You can store this value in an integer.

▪ CLOCKS_PER_SEC – reserved integer constant that 

stores the number of clock ticks per second

▪ time(&x) – gets the current UNIX time, a -1 is returned if 

the function fails. You can store this value in an integer. 

For convenience, you can just put NULL or 0 as the input.

SRJC - CS 10A - Allen Zhao



Time Functions - Examples

#include <ctime>

double runtime; // How long it took for the program to finish in seconds

int main()

{

cout << time(NULL) << endl; // Prints out current UNIX time

// … some program commands

runtime = 1.0*clock()/CLOCKS_PER_SEC; // int to double conversion

cout << “Program runtime: ” << runtime << endl;

return 0;

}

SRJC - CS 10A - Allen Zhao



Randomness in Computer Science

▪ Randomness has enormous applications in computer 
science, but because computers are designed to work as a 
fully predictable system, creating true randomness in any 
computer is impossible.

▪ All STEM fields deal with statistical analysis, so true 
randomness is ideal when testing any kind of theory or model.

▪ More importantly, true randomness would allow for much 
stronger cybersecurity (encryption).

▪ To get around this, computers fake their randomness, also 
known as being pseudorandom. It’s actually still predictable.

SRJC - CS 10A - Allen Zhao



Random Number Generation

▪ Random Number Generation (RNG) starts by creating a 
seed. This seed serves as a base calculation point from 
which all pseudorandom numbers are created.

▪ In reality, RNG is just a simple sequence of calculations. If 
your seed is the same every time you start up a random 
number generator, you’ll get the exact same sequence.

▪ To ensure that a unique seed is created every time a program 
runs, we use the current time stamp to serve as the seed. 
After all, it’s impossible to run a program with the same 
timestamp more than once (on 1 PC).

▪ Random functions can be found in the C Standard Library 
<cstdlib>. Make sure to include this if you need RNG.

SRJC - CS 10A - Allen Zhao



Setting Up RNG in C++

#include <cstdlib> // C Standard General Utilities Library

#include <ctime> // Time library

int main()

{

int seed = time(NULL); // Set seed to current UNIX time

srand(seed); // Seed the random function

cout << rand() << endl; // rand() is the RNG

// You can also reseed rand() later in the program (not recommended)

return 0;

}

SRJC - CS 10A - Allen Zhao



Range Control for rand()

/* By itself, rand() returns a random number between 0 and RAND_MAX, which is a 
constant defined in <cstdlib>. Its value is subject to variance, but it’s usually at least 
the max of a short int, or more commonly an int. */

int rand_num;

int max_rand = 100; // Choose your maximum

int min_rand = 50; // Choose your minimum

int main()

{

rand_num = rand() % (max_rand + 1 – min_rand) + min_rand;

// The range is now set to [50, 100]

return 0;

}

SRJC - CS 10A - Allen Zhao


