
CS 10A – LOOPING PART 2

Additional Loop Types and Control

Allen Zhao - SRJC CS 10A

Do While Loops

▪ The third type of loop is known as a do-while loop.

▪ It’s similar to a while loop, but has one key difference: it
will always run at least once.

▪ A do while loop checks it’s loop condition at the end of the
loop instead of the beginning.

▪ Less commonly used, but useful for certain applications
such as input validation, because those commands need
to run at least once.

▪ A semicolon will be needed at the end of the statement
where the while logic is defined.

Allen Zhao - SRJC CS 10A

Do While Syntax

char select = ‘y’;

int main()

{

do

{ // Brackets are optional if the loop contains only one command

cout << “Here is your drink.” << endl;

cout << “Would you like another? (y/n) ”;

cin >> select;

cin.ignore();

} while (select == ‘y’ || select == ‘Y’); // Notice the semicolon at the end

return 0;

}

Allen Zhao - SRJC CS 10A

Do While Example

Program

int i = 0;

int main()

{

do

cout << “Hello World!\n”;

while(i < 0);

// This statement is false, so the loop

// executes once then moves on

return 0;

}

Console

➢ ./a.exe

Hello World!

Allen Zhao - SRJC CS 10A

Loop Breaking

▪ The same break command that you use in switch-case
statements can also be used in loops.

▪ Breaking a loop stops program flow right at where you
use the break statement, exits the loop, and then
proceeds with the rest of the code.

▪ While your loop logic should be written such that you
won’t need to use break statements, they can be useful
for breaking out of nested loops.

▪ Each break statement breaks exactly one loop.

▪ Do NOT break loops. It’s a bad practice, just like goto.

Allen Zhao - SRJC CS 10A

Loop Break Example

Program

int main()

{

for(int i = 0; i < 3; i++)

{

for(int j = 0; j < 10; j++)

{

cout << ‘*’;

if(j == 5)

break;

}

cout << endl;

}

return 0;

}

Console

➢ ./a.exe

Allen Zhao - SRJC CS 10A

Loop Continuing

▪ In contrast to loop breaking, there’s also loop continuing.

▪ Continuing is the act of skipping the rest of the commands in
the loop and immediately jumping to the next loop iteration.

▪ Also limited in use, but it still has it’s applications, such as
when you want to ignore a huge swath of commands without
having to resort to encompassing all of the remainder
commands in an if statement.

▪ Just like breaking, continuing can only affect one loop per
each use of continue.

▪ Just like breaking, you should try to avoid using continue.

Allen Zhao - SRJC CS 10A

Loop Continue Example

Program

int main()

{

for(int i = 0; i < 3; i++)

{

for(int j = 0; j < 10; j++)

{

cout << ‘*’;

if(j > 4)

continue;

cout << ‘#’;

}

cout << endl;

}

return 0;

}

Console

➢ ./a.exe

##*#*#*#*****

##*#*#*#*****

##*#*#*#*****

Allen Zhao - SRJC CS 10A

