
CS 10A – FUNCTIONS PART 2

Static and pointer variables, and other things you can do with functions.

SRJC - CS 10A - Allen Zhao

Static Variables

▪ A static variable is a variable that is essentially declared
once and its place in memory is permanent for the
remainder of the program’s execution.

▪ In other words, a static variable never reinitializes. A
declaration statement doesn’t reset the value of a static
variable. You’ll have to manually reset the variable value.

▪ Use of static variables is generally not recommended
since it can be hard keep track of their value at any given
time without the reinitialization.

▪ Functions can be static too, but that’s for a later class.

SRJC - CS 10A - Allen Zhao

Using Static Variables

Program

int main()

{

for(int i = 0; i < 5; i++)

{

static int x = 0;

x += 5;

cout << x << endl;

}

// Without the static keyword, the output

// will always be 5 due to reinitialization.

return 0;

}

Console

➢ ./a.exe

5

10

15

20

25

SRJC - CS 10A - Allen Zhao

External Libraries – Member Functions

▪ Functions like substr() and length() from the string library are
used by attaching it to the end of a variable with a period.
These are known as member functions.

▪ Member functions use periods because they act on the
variable they’re attached to. The function is a member of a
variable type it can act on. In a sense, the variable in question
is the primary input parameter for the member function.
They’re almost never void types.

▪ Declaring our own member functions is outside the scope of
this class. Just know what they’re called now that you know
how to use functions.

SRJC - CS 10A - Allen Zhao

Recursion

▪ Recursion is a type of looping, applied to functions. A

recursive function one that calls itself from within its own

function. This is the most literal form of inception you can

get in programming.

▪ Logic statements lets us control how and when recursive

functions should occur. Without them, we’d have an

infinite loop, despite the lack of while and for statements.

▪ Recursive functions are widely used in the world of

algorithms, and useful for AI design or puzzle games.

SRJC - CS 10A - Allen Zhao

Recursive Functions

Program

int recur(int x)

{

if(x > 50)

return x;

else

return recur(x + 5);

}

int main()

{

cout << recur(1) << endl;

return 0;

}

Console

➢ ./a.exe

51

SRJC - CS 10A - Allen Zhao

Pointers

▪ A pointer is a type of variable that, instead of storing the value of
the variable, it stores its memory address.

▪ The memory address is some hexadecimal value attached to a
variable once it has been declared (use a * to declare a pointer).

▪ To access the address of any non-pointer variable, use & just
before the variable name.

▪ To access the value stored at the address given by the pointer
variable, use * just before the pointer name.

▪ Aside from simply allowing us to pass around arrays between
functions, pointers also allow us to pass around local variables,
allowing functions to write back to a specific variable instead of
having to the an additional step of reassigning. This is useful in the
event we want to store multiple outputs from a function.

SRJC - CS 10A - Allen Zhao

Pointers and Non-Pointer Variables

Program

int main()

{

int x = 5;

int * p = &x; // Address

cout << p << endl; // Address

cout << *p << endl; // Value

return 0;

}

Console

➢ ./a.exe

0xffffcc14

5

SRJC - CS 10A - Allen Zhao

Passing Local Variables via Pointers

Program

void pass(int * save_slot)

{

*save_slot += 10;

}

int main()

{

int x = 0;

pass(&x);

cout << x << endl;

return 0;

}

Console

➢ ./a.exe

10

SRJC - CS 10A - Allen Zhao

Empty Loops and Functions

bool isRNGOdd(int i, int * save) // Checks whether if input number is odd, saves number

{

*save = i;

return (i % 2); // Remember that int and bool are interchangable

}

int main()

{

int num;

srand(time(NULL)); // RNG seeding

while(!isRNGOdd(rand(), &num)); // For/while statement followed by ‘;’ is an empty loop

// But is still a functional finite loop due to function

// Without an accompanying do, the while statement is a self-contained loop.

return 0;

}

SRJC - CS 10A - Allen Zhao

Overloading Functions

▪ You can create multiple versions of the same function by
having different parameters for each one.

▪ The function name and output type can be completely
identical between two or more functions. However, if there is
a difference between the SET of input parameters, the
compiler considers the functions to be unique.

▪ This way, you can create a function with optional inputs. You
can also create a function to accept multiple parameter types
in the same slot. If you need to change how each version of a
function behaves, you can do that too.

▪ You can now adjust your function behavior depending on
what info the user provides the program.

SRJC - CS 10A - Allen Zhao

Overloaded Function Example 1

Program

int sum(int a, int b)

{

return a+b;

}

double sum(double a, double b)

{

return a+b;

}

int main()

{

cout << sum(3, 5) << endl;

cout << sum(3.5, 5.5) << endl;

return 0;

}

Console

➢ ./a.exe

8

9

SRJC - CS 10A - Allen Zhao

Overloaded Function Example 2

Program

int sum(int a, int b)

{

return a+b;

}

int sum(int a, int b, int c)

{

return a+b+c;

}

int main()

{

cout << sum(1, 6) << endl;

cout << sum(1, 6, 4) << endl;

return 0;

}

Console

➢ ./a.exe

7

11

SRJC - CS 10A - Allen Zhao

