
CS 10A – FUNCTIONS AND VARIABLES

Expanding your program beyond just main()

Allen Zhao – SRJC CS 10A



Introduction to Functions

▪ All commands used in C++ up to this point have taken place 
inside main(). After a while, a program becomes too big and 
too complex to be handled by main() alone.

▪ Commands can be grouped together to form code blocks 
called functions. Functions exist outside main(), and can be 
used multiple times for common operations.

▪ Functions greatly help with organizing your code and 
reducing the number of lines needed to write a program.

▪ Functions can also handle inputs and outputs if needed.

▪ Generally, the mark of a function in C/C++ is parentheses 
following a string name.

SRJC - CS 10A - Allen Zhao



Rules for Writing Functions in C/C++

▪ int main() is a function that exists pre-defined in almost every 
language, serving as the primary execution block.

▪ Functions are written outside the main() block, either before or 
after it. Naming rules are the same as they are for variables.

▪ However, because the compiler reads top to bottom, all custom 
made functions must be declared before they are used inside the 
main() block.

▪ How, where, and when functions can be used can get fairly 
nuanced, but for now, any function declared in the same file as 
your main() block can be used freely within main().

▪ Just like variables, functions have types as well, which determines 
what kind of data the function can output.

SRJC - CS 10A - Allen Zhao



Functions Before main()

void hello()

{ // Unlike loops and logic statements, you must always enclose the commands of a function inside brackets.

cout << “Hello World” << endl;

} // Functions written before main() are both declared and defined at the same time.

int test()

{ // Any number of lines can be executed as part of the function, top to bottom.

return 1;

} // Functions written before main() do NOT execute unless main() explicitly calls for them.

int main()

{

hello(); // Function call, can take place any line after the function of that name has been declared

test(); // Another function call

return 0;

}

SRJC - CS 10A - Allen Zhao



Functions After main()

void hello(); // This is known as a function prototype. It tells the compiler that a function named hello() exists somewhere in the code.

int test(); // If you want to define your functions behind the main() block, you must declare the prototype before main() in order to use it.

int main()

{

hello();

test();

return 0;

}

void hello()

{

cout << “Hello World” << endl;

} // Writing the function before main(), prototype or otherwise, does not execute the function. It must be called by main() to run at all.

int test()

{ // Any number of lines can be executed as part of the function, top to bottom.

return 1;

} // A function immediately ends with a return statement.

SRJC - CS 10A - Allen Zhao



Return Values (aka Function Outputs)

▪ You probably have noticed that all functions start with a type as 
part of their definition. This is their defined return value, also 
known as the function’s output.

▪ main() has a return type of int, so therefore, the function block 
returns some integer value after the block finishes.
 The return 0 line we’ve been using all this time is just that: main() outputting 

a 0 back to the system when it finishes.

▪ Functions can use most variable types as a return type and also 
one more: void.
 Void is exactly what it sounds like – nothing. A void function just executes 

something but does not give a value back once finished.

 As such, void functions do not contain a return statement.

▪ Executing a return statement immediately terminates the function.

SRJC - CS 10A - Allen Zhao



Input Parameters

▪ A function isn’t just necessarily a static block of commands to 
execute. It can accept inputs too.

▪ Each item/variable a function can accept as an input is known 
as a parameter.

▪ A function can any number of input parameters.

▪ Input parameters are declared like variables, but they are 
given their own name and can only be used locally. They’re 
essentially placeholders for the real values.

▪ A function with inputs does not have to have an output and 
vice-versa. 

▪ All parameters declared must be part of the prototype too.

SRJC - CS 10A - Allen Zhao



Defining Input Parameters - Examples

int add(int a, int b) // Each parameter is separated by a comma

{

return a+b;

}

void test(string str) // Parameters are placeholders to be used within the function

{

cout << str << endl;

}

double average(double x[], int size) // You can pass arrays as parameters, but cannot use sizeof() on the parameter

{

double sum = 0;

for(int i = 0; i < size; i++)

sum += x[i];

return sum/size;

}

SRJC - CS 10A - Allen Zhao



Utilizing Functions

// Use the functions as defined on the previous slide.

int main()

{

// The function is treated as its returned value when used.

cout << add(3, 4) << endl; // Prints out 7 to the console

// Make sure that parameters and their types for both input and output are consistent

test(“Hello World”);

double arr[] = {1, 2, 3, 4, 5, 6};

double avg = average(arr, sizeof(arr)/sizeof(arr[0]));

// Returned values from a function must be stored or used right away to be useful

return 0;

}

SRJC - CS 10A - Allen Zhao



Common Misconceptions

▪ A function parameter is a variable that serves as a 

placeholder for use within the function ONLY. It does not need 

to be declared before the function prototype. 

▪ If you declare a function parameter and give it the same 

name as another variable that exists outside the function, 

they will NOT be the same variable.

▪ Never declare two variables of the same name in one 

program just to force your program to work. Remember that 

the point of a function (for now) is to pass VALUES from one 

variable to another, not the variables themselves.

SRJC - CS 10A - Allen Zhao



Suggested Coding Habits for Functions

▪ A function can be as short as one command. Since function 
names can be comments as much as variable names are, it’s 
not a bad idea to have a bunch of one line functions so that 
your code can read like plain language.

▪ While it takes up more lines, I recommend defining functions 
after the main() block. It allows whoever is reading your code 
to quickly find the main() block instead of having to scroll past 
a bunch of custom functions first.

▪ Outside this class’s scope, but once you learn how to 
incorporate multiple files into one program, you should define 
and categorize your functions in those external files as 
opposed to the same file where main() is written.

SRJC - CS 10A - Allen Zhao



Variable Scope

▪ With custom functions, WHERE you declare a variable 
will now be critical to where you can use it.

▪ The scope of a variable determine which parts of a 
program can access a variable at any given time. There 
are multiple aspects of determining the variable’s scope.

▪ For this class, we’ll just cover global vs. local variables.
 A global variable is a variable that can be accessed by any 

function at any time.

 A local variable is a variable that can be accessed only by the 
function where it was originally declared.

SRJC - CS 10A - Allen Zhao



Local vs. Global Variables

int x, y; // Any variable declared outside of all functions is global

int main()

{

int i, j = x-y; // Variables declared inside a function are local to that function

x += foo(i, j); // Local variable values can be passed to other functions

return x;

}

int foo(int a, int b) // Parameter variables are considered local

{

int m = x+y;

int n = a+b; // Passing a value is not the same thing as passing a variable

return m+n;

}

SRJC - CS 10A - Allen Zhao



Suggested Coding Habits for Variable Control

▪ Because global variables can be accessed anywhere, 
anytime, this can introduce some weird bugs in larger 
projects or whenever array manipulations are needed, 
and thus are generally discouraged.

▪ By default, you should declare all of your variables locally. 
Move a variable to global if and only if you have a 
concrete reason for doing so.

▪ Temporary placeholder variables are often useful as 
global variables. It’s like a communal trash bin.

▪ Critical data should always be in local variables.

SRJC - CS 10A - Allen Zhao



Efficiency vs. Memory Trade-Off

Less Efficient, Less Memory

int sum(int arr[], int size)

{

int sum = 0;

for(int i = 0; i < size; i++)

sum += arr[i];

return sum;

}

int main()

{

int input[] = {1, 2, 3, 4, 5, 6};

// Would have to recalculate every time

for(int i = 0; i < sum(input[], sizeof(input)/sizeof(input[0])); i++)

cout << sum(input[], sizeof(input)/sizeof(input[0]));

return 0;

}

More Efficient, More Memory

int sum(int arr[], int size)

{

int sum = 0;

for(int i = 0; i < size; i++)

sum += arr[i];

return sum;

}

int main()

{

int input[] = {1, 2, 3, 4, 5, 6};

int x = sum(input[], sizeof(input)/sizeof(input[0]));

// Calculate only once

for(int i = 0; i < x; i++)

cout << x;

return 0;

}

SRJC - CS 10A - Allen Zhao


