
CS 10A – DOCUMENTATION

Designing programs before coding…and a review of habits to have

Allen Zhao – SRJC CS 10A



A Review of Good Coding Habits

▪ Never hardcode. If a number has a definition and is used in multiple places, then use a 
variable in its place instead.

▪ Comment often. As your project gets bigger, you won’t necessarily remember what your 
code even does at a certain part when you come back to it later. Also gives other people 
who need to look at your code fewer headaches.

▪ Utilize your space. Indent your code lines properly. Use new lines to break up long logic 
statements. This helps makes reading your code easier. Also, since most modern IDEs 
auto-tab for you, tabs happening out of place can be taken as a hint that something is 
missing in your syntax.

▪ Give good names for variables and functions. The names themselves are like comments, 
which makes code easier to read and comprehend.
 Suggested: constants can be written in all caps

 Suggested: functions and variables comprised of multiple words should be marked by capitalizing the 
first letter of each individual word, or spacing with an underscore. I also recommend choosing one style 
for functions and the other variables.

▪ Never delete code. Comment them out instead. This allows you to quickly revert back to 
your original code in case you can’t find a bug that needs fixing.

SRJC - CS 10A - Allen Zhao



Intro to Documentation

▪ Documentation is all about describing, in plain language, what the software does 
and how it works internally.

▪ There are many forms of software documentation, and they often involve visual 
aids and tables. However, there are some common standards.

▪ Another common method of documentation is known as the Source Code. This is 
basically an entire program translated into a bunch of comments, often one 
comment per command, while maintaining the original structure and formatting. 
Because there are many different programming languages out there, source code 
is useful in helping programmers translate programs between languages.
 If you’ve ever asked why <some video game> cannot be remade for modern hardware, the 

most likely reason is because the original source code was lost, and it would be too 
expensive to recreate the whole thing from scratch if the intent is to mimic the original.

▪ For the most part, creating, maintaining, and updating documentation can be 
annoying. Programmers often forget that they exist. Nevertheless, having 
documentation at all is better than not having any. While smaller projects do not 
necessary need documentation, big projects certainly will. 

SRJC - CS 10A - Allen Zhao



Software Flowcharts

▪ Flowcharts are the most common defined standards in 

software documentation.

▪ A specific block shape denotes what kind of operation 

that’s happening at any given point. Arrows point (in one 

direction only) from one block to the next.

SRJC - CS 10A - Allen Zhao

Process Decision Data (IO)

Terminator

(Start/End)

Off page 

connector
Connector

Display



How to Flowchart

▪ Start with the flowchart. Forget the code aspect for now. Map out the entire 
process of the program’s objective in layman’s terms. This is referred to as 
high-level detail.

▪ Each process and data block should then be translated into code 
independently, usually as functions.

▪ Connect the individual blocks together in your code with the appropriate 
loops and logic statements.

▪ Avoid crisscrossing your arrows. Use connectors (and name them) to 
visually link block diagrams together.

▪ I recommend using connectors to group sections of a flowchart dedicated 
to larger functions. Make sure that the use of on-page off-page connectors 
are consistent.

▪ Tip: A flowchart doesn’t have to contain every detail, feature, or aspect of a 
program. It’s just a general overview of how it should work.

SRJC - CS 10A - Allen Zhao



Flowchart Example 1 – Install Software

SRJC - CS 10A - Allen Zhao

Start

Present

license 

agreement

Does the 

user agree?

No

Enter 

install 

directory

Yes Select 

features 

to install

Show 

selections
Confirm

Yes

No

Start 

Install

End 

Install

Show 

installation 

log

End



Flowchart Example 2 – DigitSum.cpp

SRJC - CS 10A - Allen Zhao

Start

End

Get 

number

Get digit from 

one’s place

Add digit to 

total

Move next digit 

into position

Have all 

digits been 

added?

Show 

sum

Yes

No



Summary for Proper Flowcharting

▪ Use the right shapes for the right context.

 Some flexibility is allowed here, but the bare minimum is to use 
diamonds (decisions) where appropriate.

▪ Do not overlap shapes or arrows.

▪ Flow path must be clearly stated. Shapes with multiple 
outputs path need to specify the condition under which 
that specified path is taken.

▪ Start and end of a program must be clearly indicated.

▪ Do NOT include actual code in your flowchart text.

 Text should be just a few words describing the process at hand.

SRJC - CS 10A - Allen Zhao



Flowchart Tools

▪ I recommend getting a rough draft down on paper first just so you 
can scribble out your thoughts. Or any free drawing apps.

▪ You can use Powerpoint to draw your flowchart diagrams. If you 
go to Insert > Shapes > Flowchart, you’ll find all the symbols you 
need to draw up a flowchart. If you want something less clunky, 
Microsoft Visio is the MS product designed for creating flowcharts.

▪ Since MS Visio is not free, I instead recommend one of the two 
free tools below to draw your flowcharts.
 Google Drawings: On Google Drive, click New > More > Google Drawings

 yEd Graph Editor: Requires an installation. This tool allows you to see 
where exactly you’re currently zoomed in on the whole document.

▪ Most drawing tools contain a section solely dedicated to flowcharts 
within their Insert Shape commands. Look for those!

SRJC - CS 10A - Allen Zhao


