
CS 10A – VARIABLES IN MEMORY

Additional information on variable use and their presence in memory

Allen Zhao - SRJC CS 10A

Additional Variable Options

▪ Covered: int, char, float, double, string

▪ There are other ways to use these variables and how they’re
utilized is important.

▪ Proper use of variables and their multiple options can prevent
software-breaking bugs, such as preventing negative
numbers from being used in places where they should never
even occur. Or just to make your coding life more convenient.

▪ We can increase or decrease the amount of memory space a
variable can occupy. In some applications, we can also
change where in memory a variable is stored. This can affect
the performance specs in applications with limited resources.

Allen Zhao - SRJC CS 10A

Measuring Memory in Computers

▪ Computers run in binary. Every value is either a 1 or a 0.

▪ A single bit represents one place for a 1 or 0 to occur.

▪ 8 consecutive bits is known as a byte.

▪ 1 kilobyte (kB) = 1000 bytes

 1 megabyte (MB) = 1000 kB

 1 gigabyte (GB) = 1000 MB

 1 terabyte (TB) = 1000 GB

▪ These definitions are based on the decimal standard.

Allen Zhao - SRJC CS 10A

Measuring Memory – 1000 or 1024?

Decimal (Metric) Standard

Bytes Abbr. Unit

1000 kB kilobyte

10002 MB megabyte

10003 GB gigabyte

10004 TB terabyte

Binary (IEC and JEDEC) Standard (210 = 1024)

Bytes Abbr. IEC Unit IEC Abbr. JEDEC Unit JEDEC

1024 KiB kibibyte KB kilobyte

10242 MiB mebibyte MB megabyte

10243 GiB gibibyte GB gigabyte

10244 TiB tebibyte - -

This tera-ble joke is a bit overrated.

Allen Zhao - SRJC CS 10A

Modifying Variable Types

▪ long – increases memory used for variable type

▪ short – decreases memory used for variable type

▪ signed – default, allows negative numbers

▪ unsigned – positive numbers only

▪ const – variable cannot be changed during execution

 Useful for defining constants to be used in math or physics

▪ …and others that we’ll probably touch upon later.

Allen Zhao - SRJC CS 10A

Representing Negative Numbers in Binary

▪ Negative numbers in binary use a conversion system called
the Two’s Compliment. Calculation is required.

▪ Convert hex and oct base to binary before using this.

▪ The MSB indicates the sign of the number: 0/1 = +/-.

▪ To interpret a negative binary value, invert all bits, then add 1.
 0b0111: The MSB is 0, so it’s just 111 and thus 7 in base 10.

 0b1001: The MSB is 1, so invert the bits to get 0110, then +1 to get
0111, which is 7. Thus, in signed 4-bit memory, 0b1001 represents -7.

 In a signed 4 bit value, the full allowed range is [-8, 7], which is still 16
values. This is because we have to spend a bit to represent all
possible negative values. If unsigned, it would be [0, 24 - 1] = [0, 15].

Allen Zhao - SRJC CS 10A

Negative Numbers in Computer Memory

▪ Due to memory limitations, there is a finite minimum in signed int and char
variables. The MSB is used to represent +/-, so half of all possible values
are positive, and the other half are negative.
 min = -(2places – 1) // places and bits are synonymous in this context

 max = 2places – 1 – 1

 The number of total possible values remain the same, as seen on the previously.

▪ When the maximum is met and then 1 is added, the value rolls over.

▪ In an unsigned value, the value resets to 0.
 i.e. 1111 + 1 = 0000 = 0. The carried over 1 at the 5th bit is dropped because there’s

no memory available to store it.

▪ In a signed value, the value goes to it’s lowest value.
 i.e. 0111 + 1 = 1000 = -8. Invert 1000 to get 0111, then +1 to get 1000, which is 8 in

unsigned, so signed 1000 = -8.

 Similarly, signed 1111 = -1 so if added another 1, then it becomes 0000 so -1+1 = 0.

Allen Zhao - SRJC CS 10A

Adding Negative Numbers in Binary

0b1100 → - 4

+ 0b0011 → + 3

------------- -------

0b1111 → - 1

Two’s Complement allows us to perform
subtraction in binary without having to
“borrow” as we would in base 10
subtraction. We just add negative
numbers instead of subtracting a positive
number. Same rules apply.

1 1 1  carry over

0b0110 → 6

+ 0b1111 → + - 1

------------- ------

0b10101 → 5  4 bits

Critical to adding negative numbers is
being mindful of your memory size. In
these examples, we’re adding negative
values in 4 bit memory, and so the output
must also stay in 4 bits to keep the math
consistent. Overflow bits are dropped.

Allen Zhao - SRJC CS 10A

Table of Some Variables and Memory

Type Alt. Name Memory (Bytes)

short int int16 2

unsigned short int uint16 2

int int32 4

unsigned int uint32 4

long int int32 4

long long int int64 8

char byte 1

float 4

double 8

long double 12

Allen Zhao - SRJC CS 10A

Finding the Size of a Variable in C++

Program

int main()

{

double x;

cout << sizeof(string) << endl

<< sizeof(int) << endl

<< sizeof(x) << endl;

// string’s memory can vary

// returned value is in bytes

return 0;

}

Console

➢ ./a.exe

8

4

8

Allen Zhao - SRJC CS 10A

Using Variable Modifiers

// Variables are modified in the same line where they were declared

const double pi = 3.14159; // constants are great for avoiding hard coding too

const long double e = 2.718281828459;

int main()

{

unsigned int u_x;

short int sh_y;

// It’s recommended that when naming vars, you mark how you modified it.

unsigned char u_ch0;

signed char ch0; // char is not necessarily signed by default though

return 0;

}

Allen Zhao - SRJC CS 10A

ASCII

▪ Now why would char be signed or unsigned? Because computers
need to use binary to represent characters.

▪ A number in memory is converted to a character or action to be
taken by the computer. Consider it a numeric ID for a character.

▪ ASCII stands for American Standard Code for Information
Interchange. This is the simplest form of text representation that
any computer can interpret.

▪ Notepad uses ASCII. Look up table. Job sites sometimes use this.

▪ Char is signed because most systems only support the original
ASCII table of 128 characters. If a system can support the
extended ASCII table as well, then the type can become unsigned
to support another 128 characters.

Allen Zhao - SRJC CS 10A

http://www.asciitable.com/

ASCII in C++

Program

int ascii = 63; // 63 is a question mark

int main()

{

cout << (char) ascii << endl;

/*

This syntax can perform possible type
conversions. C++ does not like using ASCII, so
you have to force it to happen. If you try storing
char in an int variable or vice-versa, data is lost.

*/

return 0;

}

Console

➢ ./a.exe

?

Allen Zhao - SRJC CS 10A

