
CS 10A – PROGRAMMING LOGIC PART 2

Additional Logic Handling Techniques

Allen Zhao - SRJC CS 10A



Go To and Labels

▪ The most reviled form of logic. The greatest source of bugs in 

all of programming.

▪ Code in all languages run from top to bottom in a sequential 

order. Go To hijacks this order by allowing code to jump 

forward or back to specified Labels.

 goto someLabel; // Now go to where someLabel is

 someLabel: // Program continues from here, placed anywhere

▪ Very rarely is Go To ever preferred, let alone needed, over 

other forms of logic control. NEVER USE THIS IF YOU CAN 

AVOID IT. (Do not use Go To in any assignment I hand out.)

Allen Zhao - SRJC CS 10A



How to Use Go To and Labels

Program

int y = 0;

int main()

{

start_point:

y++;

if(y < 5)

goto start_point;

cout << y << endl;

return 0;

}

Console

➢ ./a.exe

5

Allen Zhao - SRJC CS 10A



Switch-Case Logic

▪ Switch-Case is a more minimalistic version of if/else 
if/else logic. Useful for handling logic blocks containing 
numerous else if statements and are readily expandable.

▪ If your logic consists only checking the specific value of a 
variable, such as selecting menu options, then switch-
case is recommended over if/else if/else.

▪ Marginally faster (by insignificant amounts) than if/else

▪ Their main drawback is that they can only handle int and 
char variables for use. They cannot handle additional 
Boolean logic either. This is true for C/C++ only.

Allen Zhao - SRJC CS 10A



Switch-Case Syntax

switch(variable) // Specify the variable you want to use, either an int type or char type

{ // Use brackets to encase the switch-case block of logic

case value0: // Block to execute based on variable value

// If variable == value0, then the code here executes

break; // break is a keyword that signifies the end of a case, the remaining cases are skipped

case value1: // You can include as many cases as you want

// Of course, you can include as many lines to execute as you want

break;

case value2: // Cases are basically the same as labels, with switch acting like a Go To

// If there is no break, then the next lines (regardless of being in other cases) execute as well

case value3: // The switch case block only exits upon hitting a break

// So if variable == value2, then case value3 gets executed as well since

break; // no break ends a case of value2.

default: // default is basically the else of switch-case

break;

}

Allen Zhao - SRJC CS 10A



Utilizing Switch-Case

Switch-Case Example

int x = 0;

int main()

{

switch(x)

{ // If using a char type, use single quotes, i.e. ‘a’

case 0:

cout << “x is 0” << endl;

break;

case 1:

cout << “x is 1” << endl;

break;

default:

cout << “x is something else” << endl;

break;

}

return 0;

}

If/Else If/Else Equivalent

int x = 0;

int main()

{

if(x == 0)

cout << “x is 0” << endl;

else if(x == 1)

cout << “x is 1” << endl;

else

cout << “x is something else” << endl;

return 0;

/*

Additional cases is the same as additional else if statements.

Switch-case statements are much easier to read since they only

allow one kind of logic, which is ==. 

*/

}

Allen Zhao - SRJC CS 10A



Multiple Choice on Switch-Case

switch(variable)

{

case ‘A’:

case ‘a’:

// You can stack multiple cases over a set of commands

// A case is just a label, so they alone execute nothing and won’t impact the program

break;

case ‘B’:

case ‘b’:

case ‘C’:

case ‘c’:

// This allows you to allow multiple ways to select that particular block

// Commonly used to disable case sensitive user inputs 

break;

}

Allen Zhao - SRJC CS 10A


