Binary, Octal, and Hexadecimal Number Systems

CS 10A - NUMBER BASES

Introduction to Bases

- There are multiple ways to represent numbers in written form when using the traditional Arabic numerals.
- Our traditional number system runs in base 10 (decimal).
- 10 different symbols (0-9), each representing one number
- Each place to the left represents an additional power to the base - 1s place, 10 s place, 100 s place, 1000 s place, etc.
- Arabic numerals are designed for base 10. Easy to read. - i.e. $96=9^{*} 10^{1}+6^{*} 10^{0}, 258=2^{*} 10^{2}+5^{*} 10^{1}+8^{\star} 10^{0}$
- However, there are advantages to changing the base

Binary

- At some point we realized that designing faster, more powerful, and more accurate computers would be much easier if everything was represented with several on/off switches instead of controlling arbitrary analog signals.
- So, to represent these switches, all computers run in Base 2, otherwise known as binary.
- Binary only uses 0 and 1 .
- 0 translates into off or false, 1 translates into on or true.
- Each place in binary is known as a bit.
- Left-most bit is called most-significant bit (MSB)
- Right-most bit is called least-significant bit (LSB)
- It can be tedious representing large numbers using binary, so other base systems are used to condense binary notation. One of them is Base 8 , known as octal.
- A single number in base $8(0-7)$ is easily converted into three binary bits $\left(2^{3}=8\right)$

Octal	Binary	Octal	Binary
7	111	3	011
6	110	2	010
5	101	1	001
4	100	0	000

Hexadecimal

- Octal is actually not that popular since it's easily mistaken for base 10. Instead, we prefer base 16, or hexadecimal.
- $2^{4}=16$, so a single hexadecimal (hex for shorthand) place takes place of 4 binary bits.
- Since the base value exceeds 9 , we used letters a-f to represent the values 10-15, respectively.

Hex	Binary	Hex	Binary	Hex	Binary	Hex	Binary
$\mathrm{f}(15)$	1111	b (11)	1011	7	0111	3	0011
e (14)	1110	a (10)	1010	6	0110	2	0010
d (13)	1101	9	1001	5	0101	1	0001
c (12)	1100	8	1000	4	0100	0	0000

Application of Bases - Conversion to Base 10

For a given base x, you can only use numbers with the range Z_{n} $=[0, x-1]$

$$
\begin{gathered}
y_{x}=z_{n} \ldots z_{7} z_{6} z_{5} z_{4} z_{3} z_{2} z_{1} z_{0} \\
y_{x}=\ldots \ldots
\end{gathered}
$$

For each respective $n^{\text {th }}$ position, the value represented by that number is $\mathrm{Z}_{\mathrm{n}}{ }^{*} \mathrm{x}^{\mathrm{n}}$
Conversion from base x to base 10 uses the formula below

$$
y_{10}=\sum_{n=0}^{\infty} z_{n} * x^{n}
$$

Application of Bases - Range of Values

- Regardless of the base you're using, all of them follow the same rules with regard to calculating their range.
- Determining the absolute maximum is as follows:
- max $=$ base $^{\text {places }}-1$
// -1 is used to account for 0
- Determining the range is as follows:
- Minimum is 0 when ignoring negatives, but you must always remember to actually count zero!
- Possible values $=$ base ${ }^{\text {places }}$
// Also known as Range
- i.e. In base 10, a 4 digit number can have $10^{4}=10000$ different possible values, ranging [0, 9999].
- i.e. In binary, a 4 bit number can have $2^{4}=16$ different possible values, ranging from $[0,15]$.

Base Notation in C/C++

- Binary, octal, and hexadecimal can all be used in C/C++
- Use int variables for all three types, outputs in decimal
- To denote the difference between the three in code,
- Binary values lead with 0b (i.e. Ob111, which is 7)
- Octal values lead with 0 (i.e. 0111, which is 73)
- Hex values lead with $0 x$ (i.e. 0×111, which is 273)
- Hex is especially fun because programmers often use it to write words into their code (i.e. Oxf00d)
- Note that not all compilers will support these other bases, but most of the modern ones should.

Base Notation in C/C++

Program

int ex_bi = 0b1101;
int ex_oct = 042;
int ex_hex = 0xb00;
int main()
\{
cout << "Binary:" << ex_bi
<<"InOctal:" << ex_oct
<<"nHex:" << ex_hex \ll end;
return 0;

Application Notes

- Any kind of arithmetic that you do in base 10 can also be done in other bases. The same rules apply.
- In the realm of software, using different bases doesn't have too many applications.
- In the realm of hardware (firmware development), this knowledge is critical since bit strings are exactly how you need to communicate with ICs (integrated circuits).

Adding Numbers in Binary

$0 b 1100$	\rightarrow	12
$+0 b 0011$	\rightarrow	+3
-----------		-----
$0 b 1111$	\rightarrow	15

Adding numbers in binary follows the same rules of base 10 addition you learned in elementary school: adding and carrying over, except you're only using 1 and 0 . You should get the same result. These rules apply to other bases too.

111		1
$0 b 1111$	\rightarrow	15
$+0 b 0110$	\rightarrow	+6

$$
\text { Ob10101 } \rightarrow \quad 21 \leqslant+1 \text { bit }
$$

< carry over

In binary, instead of carrying over a 1 to the next place when the total is $>=10$, you carry over when the total is >=2. Be mindful of memory limitations (see Variables in Memory slides) or else your math could turn out awry.

