
CS 10A – NUMBER BASES

Binary, Octal, and Hexadecimal Number Systems

Allen Zhao - SRJC CS 10A

Introduction to Bases

▪ There are multiple ways to represent numbers in written

form when using the traditional Arabic numerals.

▪ Our traditional number system runs in base 10 (decimal).

 10 different symbols (0-9), each representing one number

 Each place to the left represents an additional power to the base

 1s place, 10s place, 100s place, 1000s place, etc.

▪ Arabic numerals are designed for base 10. Easy to read.

 i.e. 96 = 9*101 + 6*100, 258 = 2*102 + 5*101 + 8*100

▪ However, there are advantages to changing the base

Allen Zhao - SRJC CS 10A

Binary

▪ At some point we realized that designing faster, more
powerful, and more accurate computers would be much
easier if everything was represented with several on/off
switches instead of controlling arbitrary analog signals.

▪ So, to represent these switches, all computers run in Base 2,
otherwise known as binary.
 Binary only uses 0 and 1.

 0 translates into off or false, 1 translates into on or true.

 Each place in binary is known as a bit.

 Left-most bit is called most-significant bit (MSB)

 Right-most bit is called least-significant bit (LSB)

Allen Zhao - SRJC CS 10A

Octal

▪ It can be tedious representing large numbers using

binary, so other base systems are used to condense

binary notation. One of them is Base 8, known as octal.

▪ A single number in base 8 (0-7) is easily converted into

three binary bits (23 = 8)

Octal Binary Octal Binary

7 111 3 011

6 110 2 010

5 101 1 001

4 100 0 000

Allen Zhao - SRJC CS 10A

Hexadecimal

▪ Octal is actually not that popular since it’s easily mistaken

for base 10. Instead, we prefer base 16, or hexadecimal.

▪ 24 = 16, so a single hexadecimal (hex for shorthand)

place takes place of 4 binary bits.

▪ Since the base value exceeds 9, we used letters a-f to

represent the values 10-15, respectively.

Hex Binary Hex Binary Hex Binary Hex Binary

f (15) 1111 b (11) 1011 7 0111 3 0011

e (14) 1110 a (10) 1010 6 0110 2 0010

d (13) 1101 9 1001 5 0101 1 0001

c (12) 1100 8 1000 4 0100 0 0000

Allen Zhao - SRJC CS 10A

Application of Bases – Conversion to Base 10

For a given base x, you can only use numbers with the range zn

= [0, x-1]

yx = zn … z7 z6 z5 z4 z3 z2 z1 z0

yx = _ … _ _ _ _ _ _ _ _

For each respective nth position, the value represented by that
number is zn*x

n

Conversion from base x to base 10 uses the formula below

𝑦10 = ෍

𝑛=0

∞

𝑧𝑛 ∗ 𝑥
𝑛

Allen Zhao - SRJC CS 10A

Application of Bases – Range of Values

▪ Regardless of the base you’re using, all of them follow the
same rules with regard to calculating their range.

▪ Determining the absolute maximum is as follows:
 max = baseplaces – 1 // -1 is used to account for 0

▪ Determining the range is as follows:
 Minimum is 0 when ignoring negatives, but you must always

remember to actually count zero!

 Possible values = baseplaces // Also known as Range

▪ i.e. In base 10, a 4 digit number can have 104 = 10000
different possible values, ranging [0, 9999].

▪ i.e. In binary, a 4 bit number can have 24 = 16 different
possible values, ranging from [0, 15].

Allen Zhao - SRJC CS 10A

Base Notation in C/C++

▪ Binary, octal, and hexadecimal can all be used in C/C++

▪ Use int variables for all three types, outputs in decimal

▪ To denote the difference between the three in code,
 Binary values lead with 0b (i.e. 0b111, which is 7)

 Octal values lead with 0 (i.e. 0111, which is 73)

 Hex values lead with 0x (i.e. 0x111, which is 273)

 Hex is especially fun because programmers often use it to write
words into their code (i.e. 0xf00d)

▪ Note that not all compilers will support these other bases,
but most of the modern ones should.

Allen Zhao - SRJC CS 10A

Base Notation in C/C++

Program

int ex_bi = 0b1101;

int ex_oct = 042;

int ex_hex = 0xb00;

int main()

{

cout << “Binary: ” << ex_bi

<< “\nOctal: ” << ex_oct

<< “\nHex: ” << ex_hex << endl;

return 0;

}

Console

➢ ./a.exe

Binary: 13

Octal: 34

Hex: 2816

Allen Zhao - SRJC CS 10A

Application Notes

▪ Any kind of arithmetic that you do in base 10 can also be

done in other bases. The same rules apply.

▪ In the realm of software, using different bases doesn’t

have too many applications.

▪ In the realm of hardware (firmware development), this

knowledge is critical since bit strings are exactly how you

need to communicate with ICs (integrated circuits).

Allen Zhao - SRJC CS 10A

Adding Numbers in Binary

0b1100 → 12

+ 0b0011 → + 3

------------- -------

0b1111 → 15

Adding numbers in binary follows the
same rules of base 10 addition you
learned in elementary school: adding and
carrying over, except you’re only using 1
and 0. You should get the same result.
These rules apply to other bases too.

1 1 1 1  carry over

0b1111 → 15

+ 0b0110 → + 6

------------- ------

0b10101 → 21  +1 bit

In binary, instead of carrying over a 1 to
the next place when the total is >= 10,
you carry over when the total is >= 2. Be
mindful of memory limitations (see
Variables in Memory slides) or else your
math could turn out awry.

Allen Zhao - SRJC CS 10A

