
CS 10A – ADVANCED ARRAY CONCEPTS

Multiple dimension arrays and passing arrays as function outputs

Allen Zhao – SRJC CS 10A

Multi-Dimensional Arrays

▪ Arrays can have multiple dimensions. That is, each array

element can be an array itself. This can continue infinitely,

inception-style, depending on what your system will allow.

▪ Generally, use of 2D and 3D arrays are fairly common, but it’s

not recommended to use anything above 3D, unless you’re

doing advanced modern physics. The number of elements in

a multi-dimensional array grows exponentially.

▪ At some point, using arrays with too many dimensions will

slow down your computer by a significant margin due to

limitations of memory access time.

SRJC - CS 10A - Allen Zhao

Declaring Multi-Dimensional Arrays

int main()

{

int size_row = 5, size_column = 2;

double arr_2d_0[size_row][size_column]; // No value initialization

// a 2D array is easily visualized as a grid

// for more dimensions, just add another [] to the declaration line

// The same declaration rules and methods of 1D arrays (generally) apply here

double arr_2d_1[][2] = {{2, 3}, {1, 1}, {5, 0}, {4, 2}}; // Specify one dimension only

// In any instance where a multi-dimensional array is used, only the first level can be arbitrary

double arr_2d_2[][2] = {2, 3, 1, 1, 5, 0, 4, 2}; // The compiler can auto-group your list

return 0;

}

SRJC - CS 10A - Allen Zhao

Declaring Multi-Dimensional Arrays – Method 3

int main()

{

int ** arr_2d = NULL; // Double asterisks

int size_row, size_column;

cout << “Enter Dimensions (rows, cols): ”;
cin >> size_row >> size_column;

arr_2d = new int * [size_row]; // Sets the number of 1D arrays for the 2D array

for(int i = 0; i < size_row; i++)

arr_2d[i] = new int[size_column]; // Declare a new array for every index

return 0;

}

SRJC - CS 10A - Allen Zhao

Accessing Multi-Dimensional Arrays

int main()

{

int size_row = 4, size_column = 3;

double arr_2d_0[size_row][size_column];

// Accessing an individual element

double single_value = arr_2d_0[1][2];

// Going through all elements sequentially

for(int i = 0; i < size_row; i++)

for(int j = 0; j < size_column; j++)

cout << arr_2d_1[i][j] << endl;

// Further nest more loops for additional dimensions if necessary

return 0;

}

SRJC - CS 10A - Allen Zhao

Size of Multi-Dimensional Arrays

Program

int main()

{

double arr_2d[4][2];

// sizeof() works the same as before

// still does not work on arrays declared by Method 3

cout << sizeof(arr_2d) << endl;

cout << sizeof(arr_2d[0]) << endl;

cout << sizeof(arr_2d[0][0]) << endl << endl;

cout << sizeof(arr_2d)/sizeof(arr_2d[0]) << endl;

cout << sizeof(arr_2d[0])/sizeof(arr_2d[0][0]) << endl;

cout << sizeof(arr_2d)/sizeof(arr_2d[0][0]) << endl;

return 0;

}

Console

➢ ./a.exe

64

16

8

4

2

8

SRJC - CS 10A - Allen Zhao

Applications

▪ As you can imagine, 2D arrays are excellent for holding
coordinates. Coordinates of any dimension (x, y, z, t) are
easily represented in 2D arrays.
 Do not confuse this with 3D+ arrays! 2D arrays can easily represent

coordinates in either 2D, 3D, or 4D.

▪ Another common application for 2D arrays is representing
color. In most computer systems, a single color is represented
by 3 separate hex values.

▪ 3D arrays can generally be used to group 2D arrays into
separate categories if necessary.

▪ If you value your sanity, avoid using arrays 4D and above.

SRJC - CS 10A - Allen Zhao

Pointers - A Short Introduction

▪ Every variable in your program is reserved memory space on
your computer that holds the value you want to use.

▪ To know where the value is stored when it’s time to access it,
every variable is assigned a memory address, which is
usually just some hex value.

▪ These memory addresses can be randomly assigned for
standalone variables, but all elements within an array have
addresses immediately next to each other, and can be
incremented through.

▪ We can store these addresses in a what’s called a pointer.

▪ Asterisks are used to mark pointer type variables.

SRJC - CS 10A - Allen Zhao

Returning Arrays as Function Outputs

▪ Arrays can’t pass around their values like standalone variables
between functions. They actually are passed around via pointers.
This is why, once we pass an array into a function, we can’t
determine their size using sizeof().

▪ To pass an array back as a function output, we need to pass it as
a pointer of the same type. (Strings are the exception.)
Unfortunately, because functions can only have one output, we
can’t pass the array size back with it.
 As a result, our use of this method is limited to arrays whose size we

already know, i.e. an array we originally passed in as a parameter.

▪ Multi-dimensional arrays are unsupported in this regard.
 To get around this, simply use a loop to put each inner array element

through the function one by one.

SRJC - CS 10A - Allen Zhao

Function – Array Output
int * func_arrOut(int arr[], int size) // This function returns an integer pointer, which serves as an integer array for us

{

int * sub_arr = NULL; // Declare a new array via Method 3

sub_arr = new int[size];

for(int i = 0; i < size; i++)

sub_arr[i] = arr[i] + 1; // Increment all values in the given array by 1

return sub_arr; // Since input arrays are pointers, you can write in changes to arr[] directly, but that modifies the original data

}

int main()

{

int length = 6;

int ex[length] = {1, 2, 3, 4, 5, 6};

int * p; // Declare the pointer to hold 1D arrays of unknown size

p = func_arrOut(ex, length);

for(int i = 0; i < length; i++) // Since returned arrays will not have a defined size, you’ll have to hold the size of the array given

cout << p[i] << endl; // Accessing values from pointer works the same as regular arrays

// Output will be 2, 3, 4, 5, 6, 7 for p[], and ex[] still holds 1-6

return 0;

}

SRJC - CS 10A - Allen Zhao

