
CS 10A – BOOLEAN ALGEBRA PART 2

Bit Shifting

Allen Zhao - SRJC CS 10A



Bit Shifting

▪ Bit shifting is the act of moving a sequence of bits by a 
specified number of places in order to change its value.
 Bit shift left: 0b00110011 << 1 == 0b01100110

 Bit shift right: 0b00110011 >> 1 == 0b00011001

▪ This is essentially multiplication or division by powers of 2, 
respectively, since shifting means changing places, identical 
to how we move a decimal point around when we either 
multiply or divide by 10.
 0s fill in the spaces left behind when shifting in either direction

▪ Used mostly for hardware level communication alongside the 
other Boolean Algebra operations.

Allen Zhao - SRJC CS 10A



Bit Shifting Quirks and Precedence

▪ Note that the symbols for bit shifting in C/C++ are the same 
as the ones used for cout and cin.

▪ << and >> have higher precedence than bitwise logic.

▪ If you try to do bitwise logic in the same lines as cout and cin, 
then compiler errors may occur if parentheses are not 
included in the right places.
 cout << 0b1010 ^ 0b0101 << endl;

 This will not compile. The program will try to shift 0b0101 by endl, which 
makes no sense and thus returns an error.

 cout << (0b1010 ^ 0b0101) << endl;
 This will compile. The parentheses forces the bitwise operations to carry 

out first, and then the output can be properly handled.

Allen Zhao - SRJC CS 10A



Utilizing Bit Shifts

Program

int x = 12;

int main()

{

cout << x << 2 << endl;

// Without parentheses, the above is just 12 and 2

// Proper syntax is as follows:

cout << (x << 2) << endl;

cout << (x >> 2) << endl;

// Bit shift by two places, int supports 32 bits

// The top line is essentially multiply by 22 = 4

// The bottom line is essentially divide by 22 = 4

return 0;

}

Console

➢ ./a.exe

122

48

3

Allen Zhao - SRJC CS 10A


