How programs crunch numbers

CS 10A – BASIC MATH IN C/C++

Allen Zhao – SRJC CS 10A

Introduction

- Math in programming is nearly completely identical as how you would do it, but with one key difference.
 Integer division (requires use of int variables)
- All programs follow PEMDAS rules
- + for addition
- for subtraction
- * for multiplication
- / for division

Integer Division

- To us, a problem like ¾ would result in 0.75. However, a computer calculates that as 0.
- Standard integer division in a program will instead calculate the largest number that can be multiplied to the divisor without exceeding the original dividend.
 - TL;DR the answer is rounded down to the nearest integer
 - 8/9 = 0
 - **■** 8/8 = 1
 - □ 8/3 = 2

Modulo Division

- Where does the lost value in integer division go?
- Modulo division: gets the remainder from division
- % for modulo division
- Can only be used with integers
 - 8 % 9 = 8
 - □ 8 % 8 = 0
 - □ 8 % 7 = 1
 - □ 8 % 3 = 2
- So for integers, / and % can be used in conjunction to get a full solution for a division problem.

Using Math in Code

Program

int main()

int num; cout << "Enter a number: "; cin >> num; cout << 3*num + 2 << endl; num = num/2; // reassigns num cout << num << endl << num%2; return 0;

Console

./a.exe
Enter a number: 5
17
2
0

Variables for Non-Integer Math

- To do regular division, we'll need a variable type that supports decimal places: float and double
 - float short for floating point accuracy, 7 decimal places
 - ouble has double the precision of float, 15 decimal places
- To tell the program to do regular and not integer division, at least one number involved must NOT be an integer.
 - In the case of whole numbers, use one 0 in the decimal place.
 - i.e. $\frac{3}{4} = 0$, $\frac{3.0}{4} = 0.75$, $\frac{3}{4.0} = 0.75$

Utilizing Non-Integer Math

Program		Console
float x = 2.5, a; double y = 3;	// actually 3.0	 ./a.exe 7.5 1 7 14
cout << x*z << endl; a = y/z; cout << a << endl:	// non-integer result	14
b = x*3; cout << b << endl;	// conversion back to int	
cout << 2.0*b << end return 0;	ll; // actually 14.0	

Allen Zhao – SRJC CS 10A

The Equal Sign

- The equal sign is used a lot in code, but it's used differently in programming than it is in math!
- I = is the assign operator, NOT an equal operator
 - x = 5 // this assigns the value 5 to variable x
 - x = x + 5 // this reassigns x as 5 plus what x currently is
- == is the operator used to define equal in C/C++
 - x == y // this asks the program if x is equal to y
- Be careful! This is an extremely common error that even veteran programmers sometimes overlook.