11.1 Goodness of Fit Test

- 1. Write the null and alternate hypothesis.
 - a. H₀: Ob = Ex, or $p_1 = p_{1,p_2} = p_{2,...}$, or Observed proportions are these same as the expected.
 - b. H_1 : Ob \neq Ex, At least one of the sample proportion is not what is expected.
- 2. Find your critical value, χ^2_R . Choose or find the level of significance, SIG = α = Level of significance. Use table or PRGM INVX2, df=k-1, k = number of categories, and Right Tail.
- 3. Enter Observed counts in List 1, These must be integers. Sum of observations = n
- 4. Enter Expected counts into List 2. These do not have to be integers.
 - a. If you put the expected proportions in L3.
 - b. Expected = p*n = (proportion of time) *(Sum of observed)
 - c. Move curser up to highlight $L2 = L3^*n$ then press enter.
- 5. Run [Stat] [Test] χ^2 -GOFtest.
- 6. Write conclusion, inserting verbal description of observed outcomes below.
 - a. If p-value < α , observed outcomes are not significantly different than expected.
 - *b.* If p-value > α , *observed outcomes* do not fit the values *expected*.

11.2 Two Way Table Test, or $\chi^2\text{-test}$

- 1. Write the null and alternate hypothesis. Determine verbal description of row and column variables.
 - a. H_0 : Ob = Ex, Rows are independent of Columns
 - b. H_1 : Ob \neq Ex, Rows are dependent on Columns
- 2. Find your critical value χ^2_R . Choose or find the level of significance, SIG = α = Level of significance. Use table or PRGM INVX2, df=k-1, k = number of categories, and Right Tail.
- 3. Enter table into a Matrix: [A] = [Obs]
- 4. Run [Stat] [Test] χ²-test
- 5. Find [B]=[Ex] = the matrix of expected values under Matrix.
- 6. Check Requirements that Ex > 5 for each value in the expected value matrix [B]
- 7. Write conclusion, inserting verbal description of row and column variables below.
 - a. If p-value < α , Row variable depends on Column variable.
 - b. If p-value > α , *Row variable* is independent of *Column variable*.