- 1) Open StatCrunch the StatCrunch Website. Scroll down to find Car details 2019 models
- 2) Navigate to Applets-> Confidence Intervals-> for a Proportions
- 3) Select From Data Table, Values in: Engine(liter), Success: Electric

Population:	
Proportion with characteristic	
p: 0.5	
From data table	
Values in:	
Engine (liter)	
Where:	
optional	Build

- 4) Adjust the samples size n= Until the Confidence level .95 is close to the Proportion of intervals that contain p.
- 5) Pick one of the 1000 intervals generated.
- 6) For this one interval report back to the class x, n, \hat{p} and the 95% confidence interval. Write a sentence explaining its meaning.
- 7) Use the formula $E = Z \frac{\alpha}{2} \sqrt{\frac{p\hat{q}}{n}}$ to derive the confidence interval you picked.

options					50
onfidence inter	vals for n. from Engine (liter)=Electric, p=0.063, Type	=Standard-Wald		
ample size: 60	100 intervals	1000 intervals Reset	Analyze Info	Sort graph	
Intervals	CI Level	Containing p	Total	Pr	op. contained
978	05	002		1000	0.902
979	1.95	202		1000	
80	··· · · · · · · · · · · · · · · · · ·				
81					
82					
83	1				
84					
85	•				
86					
87		_			
88					
89					
90					
91					
92					
93					
94					
195					
96					
97					
98		5a 83450	2. 1 . 2		
99	Ó 0.	2 0.4	0.6	0.8	1
000		Intervals	901 to 1000		