Exam 2 Practice Problems Chem 60 (Chapters 5 & 6)

This is NOT a comprehensive study guide for the exam, but includes some topics you may need to review.

1. Complete the following table and show your work below.

	Mass solute	Volume solution	Concentration %(w/v)
A)	15.5 g	253.6 mL	6.11%
В)	2.74 g	22.8 mL	12.0 %
C)	183.3 g	2930 mL	6.25 %

A)
$$\frac{15.5 g}{253.6 mL} \times 100 = 6.11\%$$

B)
$$22.8 \ mL \times \frac{12.0 \ g}{100 \ mL} = 2.74 \ g$$

C)
$$183.3 g \times \frac{100 mL}{6.25 g} = 2930 mL$$

2. Complete the following table and show your work below.

	Solute	Mass Solute	Moles Solute	Volume Solution	Molarity
A)	KNO ₃	22.5 g	0.223 mol	125.0 mL	1.78 M
В)	NaHCO ₃	2.10 g	0.0250 mol	250.0 mL	0.100 M
C)	CH₃OH	12.5 g	0.390 mol	0.780 L or 780 mL	0.500 M

A)
$$22.5 \ g \ KNO_3 \times \frac{1 \ mol}{101.11 \ g} = 0.223 \ mol \ KNO_3$$

 $molarity \ (M) = \frac{0.223 \ mol}{0.125 \ L} = 1.78 \frac{mol}{L}$

B) B250.0
$$mL \times \frac{1 L}{1000 mL} \times \frac{0.100 mol}{1 L} = 0.0250 mol NaHCO_3$$

 $0.0250 mol NaHCO_3 \times \frac{84.01 g}{1 mol} = 2.10 g NaHCO_3$

C)
$$12.5 \ g \ CH_3OH \times \frac{1 \ mol}{32.04 \ g} = 0.390 \ mol \ CH_3OH$$

 $0.390 \ mol \ CH_3OH \times \frac{1 \ L}{0.500 \ mol} = 0.780 \ L \ sol'n$

3. How many grams of K₂CO₃ are in 750 mL of a 3.5% (w/v) K₂CO₃ solution?

750 mL sol'n ×
$$\frac{3.5 \ g \ K_2 CO_3}{100 \ mL \ sol'n}$$
 = 26.3 g $K_2 CO_3$

4. A 158 mL sample of a 1.2 mol/L sucrose solution is diluted to 500.0 mL. What is the molarity of the diluted solution?

$$C_1V_1 = C_2V_2 \Rightarrow C_2 = \frac{c_1V_1}{V_2}$$

$$\frac{158 \, mL \times 1.2 \, M}{500.0 \, mL} = 0.379 \, M$$

5. How many L of a 3.0 mol/L solution of NaCl are needed to make 15.0 L of 0.15 mol/L saline?

$$V_1 = \frac{C_2 V_2}{C_1} = \frac{0.15 \frac{mol}{L} \times 15.0 L}{3.0 \frac{mol}{L}} = 0.75 L$$

- 6. Balance the following reactions:
- a) $\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(1) \rightarrow 2 \text{LiOH (aq)}$
- b) MnO_2 (s) +4 HCl (aq) \rightarrow Cl₂ (g) + MnCl₂ (aq) + 2 H₂O (l)
- c) $2 \text{ CO}_2(g) + \text{CaSiO}_3(s) + \text{H}_2\text{O}(1) \rightarrow \text{SiO}_2(s) + \text{Ca}(\text{HCO}_3)_2(\text{aq})$
- d) 2 Fe (s) + 3 S (l) \rightarrow ____ Fe₂ S₃ (s)
- 7. Gases: in each of the following situations, the properties of a gas are changing. Indicate whether each property will **increase**, **decrease** or **remain constant**:

Inflating a beach ball:

Pressure: constant Moles: increasing Volume: increasing Temperature: constant

Propane tank valve is opened to grill a steak: (consider the gas inside the tank)

Pressure: decreasing Moles: decreasing Volume: constant Temperature: essentially constant