Exam 2 Practice Problems
Chem 60 (Chapters 5 \& 6)

This is NOT a comprehensive study guide for the exam, but includes some topics you may need to review.

1. Complete the following table and show your work below.

	Mass solute	Volume solution	Concentration \%(w/v)
A)	15.5 g	253.6 mL	6.11%
B)	2.74 g	22.8 mL	12.0%
C)	183.3 g	2930 mL	6.25%

A) $\frac{15.5 \mathrm{~g}}{253.6 \mathrm{~mL}} \times 100=6.11 \%$
B) $22.8 \mathrm{~mL} \times \frac{12.0 \mathrm{~g}}{100 \mathrm{~mL}}=2.74 \mathrm{~g}$
C) $183.3 \mathrm{~g} \times \frac{100 \mathrm{~mL}}{6.25 \mathrm{~g}}=2930 \mathrm{~mL}$
2. Complete the following table and show your work below.

	Solute	Mass Solute	Moles Solute	Volume Solution	Molarity
A)	KNO_{3}	22.5 g	0.223 mol	125.0 mL	1.78 M
B)	NaHCO_{3}	2.10 g	0.0250 mol	250.0 mL	0.100 M
C)	$\mathrm{CH}_{3} \mathrm{OH}$	12.5 g	0.390 mol	0.780 L or 780 mL	0.500 M

A) $22.5 \mathrm{~g} \mathrm{KNO}_{3} \times \frac{1 \mathrm{~mol}}{101.11 \mathrm{~g}}=0.223 \mathrm{~mol} \mathrm{KNO} 3$ molarity $(M)=\frac{0.223 \mathrm{~mol}}{0.125 \mathrm{~L}}=1.78 \frac{\mathrm{~mol}}{\mathrm{~L}}$
B) $\mathrm{B} 250.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.100 \mathrm{~mol}}{1 \mathrm{~L}}=0.0250 \mathrm{~mol} \mathrm{NaHCO} 3$ $0.0250 \mathrm{~mol} \mathrm{NaHCO} 3 \times \frac{84.01 \mathrm{~g}}{1 \mathrm{~mol}}=2.10 \mathrm{~g} \mathrm{NaHCO} 3$
C) $12.5 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol}}{32.04 \mathrm{~g}}=0.390 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$
$0.390 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~L}}{0.500 \mathrm{~mol}}=0.780 \mathrm{~L} \mathrm{sol}^{\prime} \mathrm{n}$
3. How many grams of $\mathrm{K}_{2} \mathrm{CO}_{3}$ are in 750 mL of a $3.5 \%(\mathrm{w} / \mathrm{v}) \mathrm{K}_{2} \mathrm{CO}_{3}$ solution?

750 mL sol' $n \times \frac{3.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}}{100 \mathrm{~mL} \mathrm{sol} n}=26.3 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$
4. A 158 mL sample of a $1.2 \mathrm{~mol} / \mathrm{L}$ sucrose solution is diluted to 500.0 mL . What is the molarity of the diluted solution?

$$
\begin{aligned}
C_{1} V_{1} & =C_{2} V_{2} \quad \Rightarrow \quad C_{2}=\frac{C_{1} V_{1}}{V_{2}} \\
& \frac{158 \mathrm{~mL} \times 1.2 \mathrm{M}}{500.0 \mathrm{~mL}}=0.379 \mathrm{M}
\end{aligned}
$$

5. How many L of a $3.0 \mathrm{~mol} / \mathrm{L}$ solution of NaCl are needed to make 15.0 L of $0.15 \mathrm{~mol} / \mathrm{L}$ saline?

$$
V_{1}=\frac{C_{2} V_{2}}{C_{1}}=\frac{0.15 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 15.0 \mathrm{~L}}{3.0 \frac{\mathrm{~mol}}{\mathrm{~L}}}=0.75 \mathrm{~L}
$$

6. Balance the following reactions:
a) $\mathrm{Li}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{LiOH}(\mathrm{aq})$
b) $\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ (l)
c) $2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaSiO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})$
d) $2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{~S}(\mathrm{l}) \rightarrow$ \qquad $\mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})$
7. Gases: in each of the following situations, the properties of a gas are changing. Indicate whether each property will increase, decrease or remain constant:

Inflating a beach ball:

Pressure: constant Moles: increasing Volume: increasing Temperature: constant

Propane tank valve is opened to grill a steak: (consider the gas inside the tank)

Pressure: decreasing Moles: decreasing Volume: constant Temperature: essentially constant

