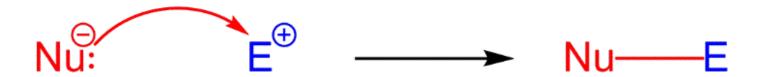


Mechanisms: Nucleophiles, Electrophiles, and Leaving Groups

Learning Outcomes


- Understand the connectivity between energy and reactivity
- Since chemical equations are chemical sentences, read mechanisms as annotated chemical sentences
- 3. Identify a nucleophile and an electrophile
- 4. Predict which nucleophile is stronger from a set and predict which electrophile is more electrophilic from a set
- Identify a leaving group and identify which leaving group is the best leaving group from a given set

Curved Arrows

A Nucleophile is an Electron Source and an Electrophile is an Electron Sink

Nucleophile (Nur): A reactant that **provides** a pair of electrons to form a new covalent bond.

Electrophile (E+): A reactant that accepts an electron pair to form a new covalent bond.

Nucleophiles Donate High-Energy Electrons


Lone Pair

Negative Charge

Electron Lone Pairs Are Nucleophiles

Lone pairs are nucleophiles

Each of these atoms donates a lone pair to an electrophile

Trends in Nuclephilicity: Charge

Lone pairs are nucleophiles

Each of these atoms donates a lone pair to an electrophile

Three important trends:

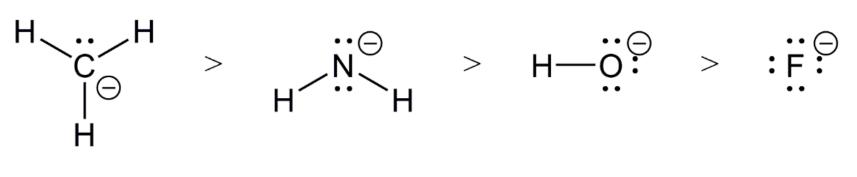
1) Nucleophilicity increases as the charge on the atom becomes more negative:

Food for Thought

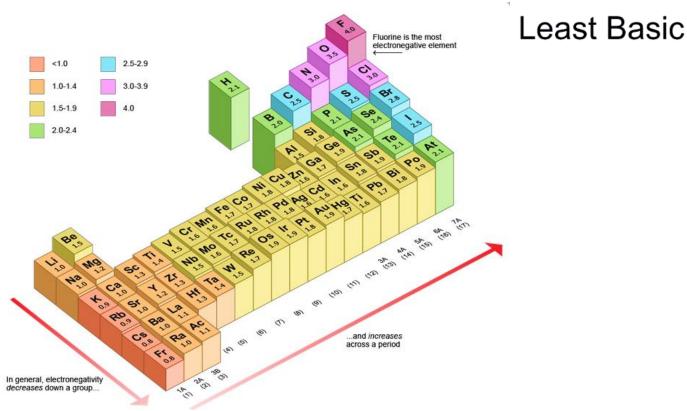
Consider the following two questions.

1. What is a base?

2. What makes one base stronger than another (this is the concept of basicity)


Bases

Higher-energy electrons are more reactive electrons. More reactive electrons are more *basic*.


Electrons are higher in energy when:

- 1. They associate with less electronegative atoms
- 2. They are localized (confined to a small volume)

A Lone Pair on a *Less*Electronegative Atom is More Basic

Most Basic

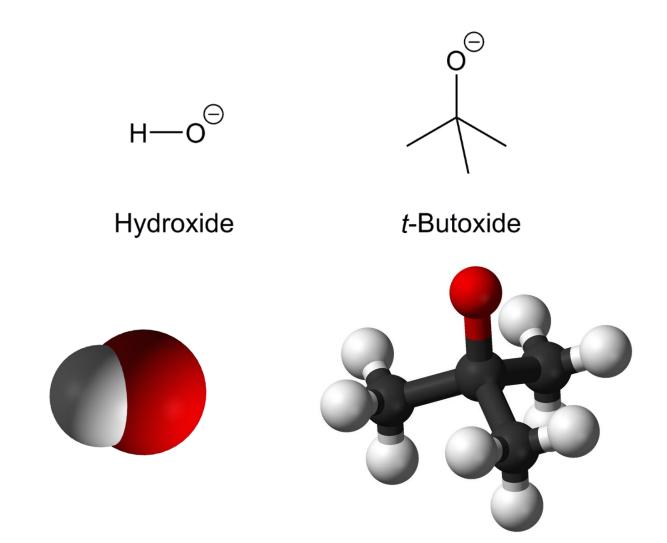
Trends in Nuclephilicity: Basicity

Lone pairs are nucleophiles

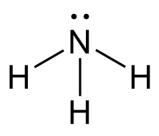
Each of these atoms donates a lone pair to an electrophile

Three important trends:

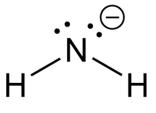
1) Nucleophilicity increases as the charge on the atom becomes more negative:


$$\Theta_{OH} > H_{2}O > H_{3}O^{\oplus}$$

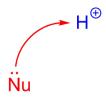
2) Nucleophilicity increases with basicity:


$$\Theta_{CH_3} > \Theta_{NH_2} > \Theta_{OH} > \Theta_{F}$$

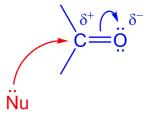
Trends in Nuclephilicity: Accessibility


More accessible lone pairs are more nucleophilic.

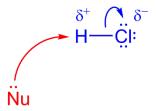
Is ammonia or the amide ion a stronger nucleophile? Explain.



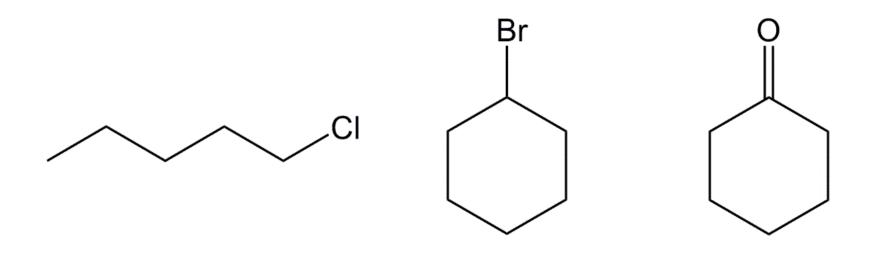
Ammonia



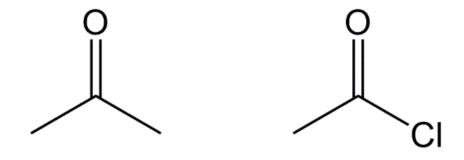
Amide Ion


Electrophiles Have an Electropositive Atom

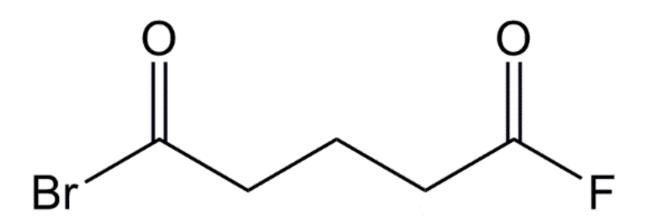
A positive charge representing an empty orbital



A double bond to an electronegative element

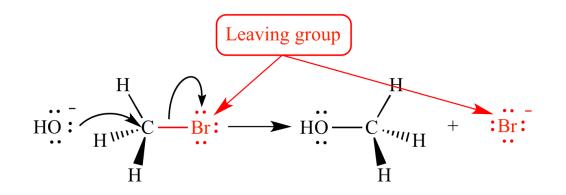


A single bond to an electronegative element

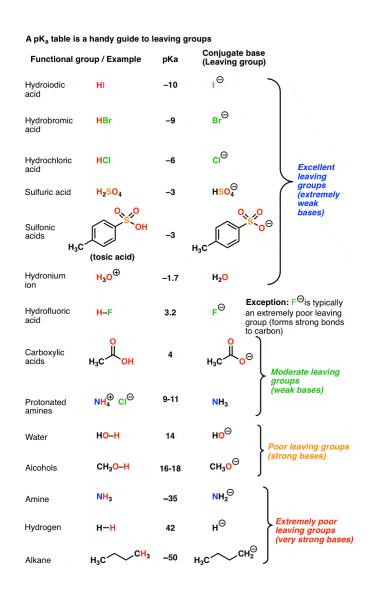

Identify the electrophilic atom in each of the following structures.

Which molecule is more electrophilic? Explain.

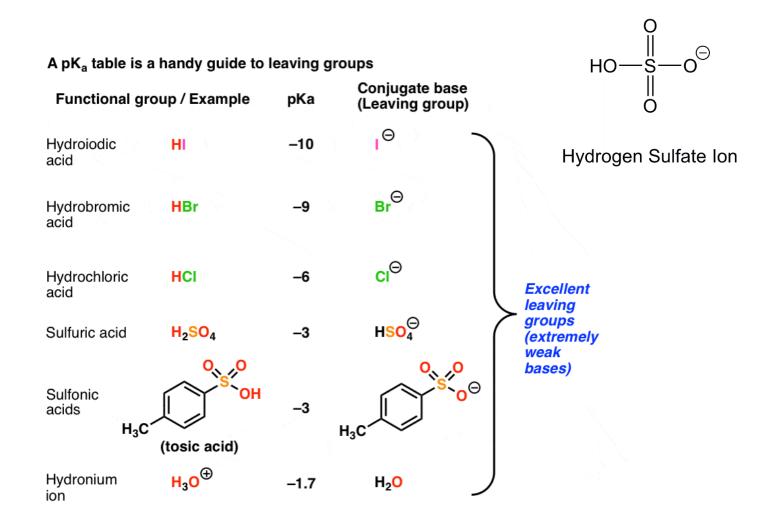
Identify the *most* electrophilic atom in the following molecule.



Leaving Groups


Leaving Group: An atom or group of atoms that breaks away from the rest of the molecule, taking with it the electron pair which used to be the bond between the leaving group and the rest of the molecule.

Good leaving groups will distribute negative charge well (i.e. they are relatively stable after leaving)


Leaving Group Examples

Better Leaving Groups are More Stable Species

Better Leaving Groups are More Stable Species

Better Leaving Groups are More Stable Species

A pK_a table is a handy guide to leaving groups

Functional group / Example pKa		Conjugate base (Leaving group)		
Hydrofluoric acid	H-F	3.2	F an	ception: F ^O is typically extremely poor leaving oup (forms strong bonds carbon)
Carboxylic acids	H₃C OH	4	H₃C C⊖	Moderate leaving groups (weak bases)
Protonated amines	NH ₄ [⊕] CI ^Θ	9-11		
Water	но-н	14	HO [⊖]	Poor leaving groups (strong bases)
Alcohols	CH₃O–H	16-18	CH₃O [⊝]	
Amine	NH ₃	~35	NH ₂ ⊖]
Hydrogen	н–н	42	н⊖	Extremely poor leaving groups (very strong bases)
Alkane	H ₃ C CH ₃	~50	H_3C CH_2^{\bigcirc}) J