

Hydrocarbons

Learning Outcomes

- 1. Interpret *and* draw bond-line structures
- 2. Gain an appreciation for IUPAC nomenclature and know that each name corresponds to **one**, unique, chemical structure
- 3. Identify constitutional isomers
- 4. Give examples of petroleum products and describe the path from hydrocarbons to plastics
- 5. Predict trends in boiling points of hydrocarbons and know that London dispersion forces are the primary intermolecular forces that contribute to the physical properties (at-home learning objective)

Some Components of Gasoline

How are these molecules similar?

2,2,4-Trimethylpentane

Butane

Toluene

Carbon Skeletons

2,2,4-Trimethylpentane

Butane

1,2,4-Trimethylbenzene

Toluene

Bond-Line Structures

2,2,4-Trimethylpentane

Butane

Bond-Line Structures Are The Way to Go To More-Easily Keep Track of the Carbon Skeleton!

2,2,4-Trimethylpentane

Bond-Line Structures Are The Way to Go To More-Easily Keep Track of the Carbon Skeleton!

2,2,4-Trimethylpentane

Hand-Drawn Structures vs. 3-D Molecular Structure

2,2,4-Trimethylpentane

Interpreting a Bond-Line Structure: Guidelines

- A vertex (or kink in the line) is an implied carbon atom.
- 2. A link is a bond.
- If a carbon atom does not share or have eight electrons, it is implied that carbon-hydrogen covalent bonds account for the difference.
- Atoms other than C and H are drawn.

Butanol

$$H$$
 H
 H
 H
 C
 C
 OH
 H
 H
 H
 H

Problem 1

Draw the bond-line structure for butane.

Draw the bond-line structure for butane.

Problem 2

What is the molecular formula for isoprene?

$$C_5H_8$$

Naming Alkanes

functional group

Designates position and number of

carbon atoms in branch

Number of Carbons	Root Prefix
1	meth-
2	eth-
3	prop-
4	but-
5	pent-
6	hex-
7	hept-
8	oct-
9	non-
10	dec-

Alkanes, Alkenes, and Alkynes: Oh My!

Alkanes

Alkenes

Alkynes

Naming Alkanes, Alkenes, and Alkynes: Oh My!

Isomers Are A Set of Molecules That Have The Same Molecular Formula, But Different Molecular Structure

Constitutional (Skeletal/Structural) Isomers: One molecule in a set of isomers that differ In the order of the atoms connected. The atoms are the same among the different atoms, but the connectivity differs.

Problem 3

What is the relationship between the following structures (same molecule, different molecule, constitutional isomers)?

$$C_6H_{14}$$

$$CH_3 H H$$
 $H_3C - C - C - C - CH_3$
 $H H H H$

Combustion of Hydrocarbons

Fuel sources:

Methane: Natural Gas

Ethane: Used to produce ethyne (acetylene)

Propane: BBQs

Butane: Lighter fluid

Hydrocarbon Combustion Chemical Equations

Methane: $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$

Ethane: $2 C_2 H_6 + 7 O_2 \rightarrow 6 H_2 O + 4 CO_2$

Propane: $C_3H_8 + 5 O_2 \rightarrow 4 H_2O + 3 CO_2$

Butane: $2 C_4H_{10} + 13 O_2 \rightarrow 10 H_2O + 8 CO_2$

Daily-Life Applications of Petroleum

https://www.youtube.com/watch?v=57oP8GhY9zc

Note, "petroleum" refers to crude oil or the mixture of hydrocarbons processed from crude oil

Plastics in Medicine

Where Does Plastic Come From?

https://www.youtube.com/watch?v=ggh0Ptk3VGE

