1. We dissolve 17.3 g of LiO_{2} (molar mass $=29.9 \mathrm{~g} / \mathrm{mol}$) in sufficient water to $400 . \mathrm{mL}$ of solution. What is the molarity of the solution?

$$
\mathrm{M}_{\mathrm{LiO}_{2}}=\frac{n_{\mathrm{LiO}_{2}}}{V_{\text {solution }}}
$$

Remember the volume must be in liters!!!

$$
\begin{gathered}
\mathrm{M}_{\mathrm{LiO}_{2}}=\frac{\left(17.3 \mathrm{~g} \mathrm{LiO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{LiO}_{2}}{29.9 \mathrm{gLiO}_{2}}\right)}{\left(400 \times 10^{-3} \mathrm{~L}\right)} \\
\mathrm{M}_{\mathrm{LiO}_{2}}=\frac{0.5786 \mathrm{~mol} \mathrm{LiO}_{2}}{400 \times 10^{-3} \mathrm{~L}} \\
\mathrm{M}_{\mathrm{LiO}_{2}}=1.45 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
\mathrm{M}_{\mathrm{LiO}_{2}}=1.45 \mathrm{M}
\end{gathered}
$$

2. Calculate the mass, in grams of $\mathrm{Ba}(\mathrm{OH})_{2}$ required to prepare exactly 500 . mL of a $0.880-\mathrm{M}$ solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.

$$
\mathrm{M}_{\mathrm{BaOH}_{2}}=\frac{\mathrm{n}_{\mathrm{Ba}(\mathrm{OH})_{2}}}{V_{\text {solution }}}
$$

To determine the mass we must first calculate the number of moles of $\mathrm{Ba}(\mathrm{OH})_{2}$.

$$
\begin{gathered}
\mathrm{M}_{\mathrm{Ba}(\mathrm{OH})_{2}}=\frac{\mathrm{n}_{\mathrm{Ba}(\mathrm{OH})_{2}}^{V_{\text {solution }}}}{n_{\mathrm{Ba}(\mathrm{OH})_{2}}=\mathrm{M}_{\mathrm{Ba}(\mathrm{OH})_{2}} \cdot V_{\text {solution }}} \\
n_{\mathrm{Ba}(\mathrm{OH})_{2}=\mathrm{M}_{\mathrm{Ba}(\mathrm{OH})_{2}} \cdot V_{\text {solution }}} \\
n_{\mathrm{Ba}(\mathrm{OH})_{2}=(0.880 \mathrm{M})\left(500 \times 10^{-3} \mathrm{~L}\right)} \\
n_{\mathrm{Ba}(\mathrm{OH})_{2}}=\left(0.880 \frac{\mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{\mathrm{~L}}\right)\left(500 \times 10^{-3} \mathrm{~L}\right) \\
n_{\mathrm{Ba}(\mathrm{OH})_{2}=0.440 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}
\end{gathered}
$$

Now that we know the number of moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ required, we can calculate the mass required that gives us this number of moles!

$$
\begin{aligned}
m_{\mathrm{Ba}(\mathrm{OH})_{2}}= & 0.440 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{171.34 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}} \\
& m_{\mathrm{Ba}(\mathrm{OH})_{2}}=75.4 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}
\end{aligned}
$$

3. A stock solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is available to prepare solutions that are more dilute. Calculate the volume, in mL , of a $2.0-\mathrm{M}$ solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ required to prepare exactly $500 . \mathrm{mL}$ of a $0.560-\mathrm{M}$ solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

This is a dilution question so we need to use.

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

The key is determining which numbers corresponds to which variables. The $2.0-\mathrm{M}$ solution is more concentrated than the 0.560 M solution so this tells us that M_{1} is 2.0 M and M_{2} is 0.560 M . Next, we see 500 . mL of the $0.560-\mathrm{M}$ (diluted) solution. Thus, the final volume, or V_{2} is 500 . mL . Thus, V_{1} is what we are solving for! We can also confirm this assignment because the question asks us what volume of our $2.0-\mathrm{M}$ solution (stock/starting solution) we must dilute.
In summary:

$$
\begin{aligned}
& \mathrm{M}_{1}=2.0 \mathrm{M} \\
& \mathrm{M}_{2}=0.560 \mathrm{M} \\
& \mathrm{~V}_{1}=? \\
& \mathrm{~V}_{2}=500 . \mathrm{mL}
\end{aligned}
$$

Now we can solve for V_{1} !!

$$
\begin{gathered}
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1}=\frac{\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{M}_{1}} \\
\mathrm{~V}_{1}=\frac{(0.560 \mathrm{M})(500 . \mathrm{mL})}{(2.0 \mathrm{M})} \\
\mathrm{V}_{1}=140 \mathrm{~mL}
\end{gathered}
$$

Note, because of 2.0 M we need two significant figures!

$$
\mathrm{V}_{1}=14 \times 10^{1} \mathrm{~mL}
$$

4. Indicate the volume of each solute and solvent needed to make the following solutions:
(a) $280 . \mathrm{mL}$ of a $38 \% \mathrm{v} / \mathrm{v}$ of ethanol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, in water:
(i) mL of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(ii) mL of water
(b) 435 mL of a $1.4 \% \mathrm{v} / \mathrm{v}$ solution of ethyl acetate, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, in water:
(i) mL of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
(ii) mL of water
(a)
(i)

$$
(\mathrm{v} / \mathrm{v}) \%=\frac{\mathrm{mL} \text { solute }}{\mathrm{mL} \text { solution }} \times 100
$$

Rewriting our expression for $\mathrm{v} / \mathrm{v} \%$ into the form of an equation:

$$
\begin{gathered}
P=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times 100 \\
V_{\text {solute }}=\frac{P}{100} \cdot V_{\text {solution }} \\
V_{\text {solute }}=\frac{38 \%}{100} \cdot 280 . \mathrm{mL} \\
V_{\text {solute }}=(0.38)(280 . \mathrm{mL}) \\
V_{\text {solute }}=106.4 \mathrm{~mL}
\end{gathered}
$$

(ii)

$$
V_{\text {solution }}=V_{\text {solute }}+V_{\text {solvent }}
$$

Recall that ethanol is the solute and water is the solvent. Therefore,

$$
\begin{gathered}
V_{\text {solution }}=V_{\text {ethanol }}+V_{\text {water }} \\
V_{\text {water }}=V_{\text {solution }}-V_{\text {ethanol }} \\
V_{\text {water }}=280 . \mathrm{mL}-106.4 \mathrm{~mL} \\
V_{\text {water }}=173.6 \mathrm{~mL} \\
V_{\text {water }}=174 \mathrm{~mL}
\end{gathered}
$$

(b)
(i)

$$
(\mathrm{v} / \mathrm{v}) \%=\frac{\mathrm{mL} \text { solute }}{\mathrm{mL} \text { solution }} \times 100
$$

Rewriting our expression for $\mathrm{v} / \mathrm{v} \%$ into the form of an equation:

$$
\begin{gathered}
P=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times 100 \\
V_{\text {solute }}=\frac{P}{100} \cdot V_{\text {solution }} \\
V_{\text {solute }}=\frac{1.4}{100} \cdot 435 . \mathrm{mL} \\
V_{\text {solute }}=(0.014)(435 . \mathrm{mL}) \\
V_{\text {solute }}=6.1 \mathrm{~mL}
\end{gathered}
$$

(ii)

$$
V_{\text {solution }}=V_{\text {solute }}+V_{\text {solvent }}
$$

Recall that ethyl acetate is the solute and water is the solvent. Therefore,

$$
\begin{gathered}
V_{\text {solution }}=V_{\text {ethyl acetate }}+V_{\text {water }} \\
V_{\text {water }}=V_{\text {solution }}-V_{\text {ethyl acetate }} \\
V_{\text {water }}=435 . \mathrm{mL}-6.1 \mathrm{~mL} \\
V_{\text {water }}=428.9 \mathrm{~mL} \\
V_{\text {water }}=429 \mathrm{~mL}
\end{gathered}
$$

5. The label on a jar of jam says it contains 17 g of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, per tablespoon (15 mL). What is the molarity of sucrose in the jam?

$$
\begin{gathered}
\mathrm{M}_{\text {sucrose }}=\frac{n_{\text {sucrose }}}{V_{\text {solution }}} \\
\mathrm{M}_{\text {sucrose }}=\frac{17 \mathrm{~g} \text { sucrose } \times \frac{1 \mathrm{~mol} \text { sucrose }}{342.29 \mathrm{~g} \text { sucrose }}}{15 \times 10^{-3} \mathrm{~L}} \\
\mathrm{M}_{\text {sucrose }}=\frac{0.049665 \mathrm{~mol} \text { sucrose }}{15 \times 10^{-3} \mathrm{~L}} \\
\mathrm{M}_{\text {sucrose }}=3.31 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
\mathrm{M}_{\text {sucrose }}=3.3 \mathrm{M} \\
\hline
\end{gathered}
$$

