

Solutions and Colloids

Learning Outcomes

- 1. Describe the relationship between the following terms: solute, solvent, solution.
- 2. Describe the change in solubility for most solids and gases when the temperature either increases or decreases.
- 3. Do the following calculations:

$$\begin{aligned} & \text{Concentration} = \frac{\text{amount}}{\text{volume}} \\ & (w/v) \% = \frac{\text{g solute}}{\text{mL solution}} \times 100 \\ & (v/v) \% = \frac{\text{mL solute}}{\text{mL solution}} \times 100 \\ & M = \frac{\text{mol solute}}{\text{L solution}} \end{aligned}$$

Common Mass/Volume Relationships for Human Health: $\frac{mg}{dL}$, $\frac{\mu g}{dL}$, and $\frac{ng}{dL}$

- 4. Explain what it means to dilute a solution
- 5. Calculate the concentration of a diluted solution.

Solutions Are A Homogeneous Mixture of Two or More Substances

Solute: Minority Component(s)

Solvent: Majority Component

Problem 1

Which of the following are solutions? For a solution define the solute(s) and solvent.

- (a) Atmospheric Air
- (b) 100% Ethanol
- (c) Lemoncello
- (d) Yellow Brass (70% copper and 30% zinc alloy)
- (e) Simple Syrup [1 cup sugar (200 g) and 1 cup water (237 g)]
- (f) Elemental Gold
- (g) 18 k Rose Gold (75% Au, 20% Cu, and 5% Ag alloy)

(a) Atmospheric Air

Component	Percent (%)
N_2	78.084
O_2	20.946
Ar	0.9340
CO_2	0.041332
Ne	0.001818
Не	0.000524
CH ₄	0.000187
Kr	0.000114

(b) 100% Ethanol

(c) Lemoncello

(d) Yellow Brass (alloy of 70% copper and 30% zinc)

(e) Simple syrup

[1 cup sugar (200 g) and 1 cup water (237 g)]

(f) Elemental Gold

(g) 18 k Rose Gold (75% Au, 20% Cu, and 5% Ag alloy)

Solutions

TABLE 13.1 Common Types of Solutions				
Solution Phase	Solute Phase	Solvent Phase	Example	
gaseous solutions liquid solutions solid solutions	gas gas liquid solid solid	gas liquid liquid liquid solid	air (mainly oxygen and nitrogen) soda water (CO ₂ and water) vodka (ethanol and water) seawater (salt and water) brass (copper and zinc) and other alloys	

Solubility of Liquids In General Increases with Temperature

Think-Pair Share

Does the solubility of gas molecules increase or decrease with temperature?

Hint, what is the worst time to go fishing?

Champaign Bubbles

More bubbles = higher temperature!

Concentration

What does it mean when a solution is more concentrated? What ideas do you have about representing a concentration mathematically?

Concentration Units

Concentration =
$$\frac{\text{amount}}{\text{volume}}$$

$$(w/v)\% = \frac{g \text{ solute}}{mL \text{ solution}} \times 100$$

$$(v/v)\% = \frac{mL \text{ solute}}{mL \text{ solution}} \times 100$$

$$M = \frac{\text{mol solute}}{\text{L solution}}$$

Common Mass/Volume Relationships for Human Health: $\frac{mg}{dL}$, $\frac{\mu g}{dL}$, and $\frac{ng}{dL}$

Problem 2

A common saline solution for IVs is often prepared by dissolving 9.00 g of salt in 1 L of water. Calculate the concentration in molarity. Note, ρ_{water} = 1.00 g/mL.

$$M_{NaCl} = \frac{n_{NaCl}}{V_{\text{solution}}}$$

$$M_{NaCl} = \frac{9 \text{ g NaCl} \times \frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}}}{1 \text{ L}}$$

$$M_{NaCl} = \frac{0.154 \text{ mol NaCl}}{1 \text{ L}}$$

$$M_{NaCl} = 0.154 \frac{mol}{L}$$

$$M_{NaCl} = 0.154 M$$

Problem 3

If 6 g of NaCl is dissolved in enough water to make 300. mL of solution, what is the w/v percent of NaCl?

$$(w/v)\% = \frac{g \text{ solute}}{mL \text{ solution}} \times 100$$

$$(w/v)\% = \frac{6.0 \text{ g}}{300 \text{ mL}} \times 100$$

$$(w/v)\% = 0.02 \times 100$$

$$(w/v)\% = 2\% (w/v)$$

Problem 4

A vodka manufacturer prepares a vodka product by mixing 80. mL ethanol and 120. mL water. Calculate the v/v percent ethanol.

$$(v/v)\% = \frac{mL \text{ solute}}{mL \text{ solution}} \times 100$$

$$(v/v)\% = \frac{80. \text{ mL ethanol}}{80. \text{ mL ethanol} + 120. \text{ mL water}} \times 100$$

$$(v/v)\% = \frac{80. \text{ mL ethanol}}{200. \text{ mL solution}} \times 100$$

$$(v/v)\% = 0.40 \times 100$$

$$(v/v)\% = 40.\% (v/v)$$

Dilution

Problem 5

A 0.20 M NaCl solution has a volume of 5 mL. What must the total volume be for the solution to have a concentration of 0.10 M?

Dilution Math

$$M_1V_1 = M_2V_2$$

Term	Physical Meaning	Notes
M_1	Starting concentration	For a dilution, this is the higher concentration.
M_2	Final Concentration	For a dilution, this is the lower concentration.
V_1	Starting Volume	For a dilution, this is a smaller volume.
V_2	Final Volume	For a dilution, this is a larger volume since the added solvent dilutes the solution.

Problem 6

A 5 mL of a 0.20 M NaCl solution is diluted to a final volume of 18 mL. What is the concentration of the diluted solution?

Learning Outcomes

- Describe, at the atomic/molecular level, what occurs when water-soluble ionic and molecular compounds dissolve in water.
- 2. Explain what makes a solution an electrolyte.
- 3. Qualitatively describe diffusion, osmosis, and dialysis.
- 4. Chemical Connections: Electrolyte solutions in body and intravenous fluids
- 5. Chemical Connections: Hemodialysis

Why Do Some Materials Dissolve While Other Do Not?

VS.

Person-Netflix Interaction > Person-Yardwork Interaction

Why Do Some Materials Dissolve While Other Do Not?

VS.

Person-Dessert Buffet Interaction > Person-Netflix Interaction

Why Do Some Materials Dissolve While Other Do Not?

Electrolyte (Ionic) vs. Nonelectrolyte (Nonionic) Solutions

Dissolved ions (NaCl)

Electrolyte solution

Dissolved molecules (sugar)

Nonelectrolyte solution

Diffusion, Osmosis, and Dialysis

https://www.youtube.com/watch?v=tHzkRtzVmUM

Diffusion

https://www.youtube.com/watch?v=uyg1sa0HxPA

Cucumber Science

https://www.youtube.com/watch?v=dD9dGFrFcoo

Cucumbers and Osmosis

Osmosis

Osmosis

Red Blood Cells and Osmosis

NaCl>RBC Salty Water >0.9% NaCl NaCI=RBC 0.9% NaCI

NaCl<RBC
Distilled Water
0% NaCl

RBC = Red Blood Cell

Dialysis

https://www.youtube.com/watch?v=9KZHowze7lg

