JUNIOR COLLEGE

Acids and Bases

Learning Outcomes

1.Identify an acid or base according to the Arrhenius or Bronsted-Lowry definitions.
2.Explain why the term "strong" is used differently when applied to an acid or a cup of coffee.
3.Use K_{a} to access how strong/weak an acid is.

Class Question!

\square When poll is active, respond at PollEv.com/matthewfonta586
Text MATTHEWFONTA586 to $\mathbf{2 2 3 3 3}$ once to join

How would you describe an acid and a base? What are some of their respective properties?

${ }^{*}$ No responses received yet. They will appear here.

Acids and Bases

https://www.youtube.com/watch?v=mnbS56 HQbaU

Fruit Acids

A GUIDE TO COMMON FRUIT ACIDS

Most people probably know that lemons and other citrus fruits contain citric acid - but it's just one of a number of different organic acids that can be found in fruits. Here we look at a number of the most common acids, and the various fruits that they are found in.

CITRIC ACID

The main acid in citrus fruits is, unsurprisingly, citric acid. Lemons and limes have particularly high levels of this compound. It is also the main acid in a number of berry fruits,
including strawberries, raspberries and gooseberries.

OTHER ORGANIC ACIDS

Citric, malic, and tartaric acids are not the only organic acids
present in fruit - a number of other acids are also present,
albeit in significantly smaller quantities. To the right, a small
note of some of the fruits in which they're often found

MALIC ACID

Malic acid is the main acid in most stone fruits such as cherries, apricots, peaches, and nectarines. It's also found in high amounts in apples, and in lower amounts in bananas. Though watermelons have a low acid content, their principal acid is also malic acid.

Tartaric acid is the principal acid in fewer fruits than citric and malic acid. However, it is the main acid in grapes, which also contain malic acid. Red grapes have higher levels of tartaric acid. The main acid of avocado and tamarind is also tartaric acid.
© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.
©(i) Θ

Acids Are Sour

SOUR WORMS

Nutrition Facts

```
Serving Size: (0.0g)
```

Servings Per Container: 1
Calories 120
Calories from Fat 0

Amount/serving		Amount/serving \% Daily Value*	\% Daily Value*	* Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs:			
Total Fat 0 g	0\%	Total Carbohydrate 29g 10\%					
Saturated Fat 0g	0\%	Dietary Fiber 0g	0\%		Calories:	2,000	2,500
Trans Fat 0g		Sugars 18g		Sat Fat	Less than	20 g	259
Cholesterol 0mg	0\%	Protein 2 g		Cholesterol	Less than	300 mg 2,400mg	$\begin{aligned} & 300 \mathrm{mg} \\ & 2,400 \mathrm{mg} \end{aligned}$
Sodium 5mg	0\%			Total Carbohydrate		300 g	375 g
Vitamin A 0\% • Vitar	in C 0\% • Calci	um 0\% • Iron 0\%					

INGREDIENTS: CORN SYRUP (FROM CORN), SUGAR (FROM BEETS), WATER, GELATIN, LACTIC ACID, CITRIC ACID, NATURAL AND ARTIFICIAL FLAVORS, FUMARIC ACID, PECTIN (DERIVED FROM FRUIT), TITANIUM DIOXIDE (COLOR), FD\&C YELLOW \#5, FD\&C RED \#40, FD\&C YELLOW \#6, FD\&C BLUE \#1.

BEDFORD CANDIES 106E. PITT ST BEDFORD, PA 15522

Citric Acid + Sugar = Sour Sanding

Acids Dissolve Many Metals

Acids Can Dissolve Teeth

Brush your teeth 30 minutes after drinking an acidic beverage

In an interview with Reuters Health, Dr. Attin said that tooth enamel appears to suffer less damage when brushing occurs after the tooth has had time to mount its own defense against acidic erosion.
"Acidic substances attack tooth enamel, and upper layers of the tooth can even be dissolved in some acidic drinks," he said. "However, protective agents in saliva may help repair and rebuild damaged tooth enamel."

Compiled by Amy E. Lund, editorial coordinator.

Bases Are Bitter

Chocolate Nibs

Chocolate Bar

Why Are Nibs Bitter?

Caffeine

Theobromine

Bases Are Slippery

Products With Bases

Acids and Bases
 Change the Colors of Indicators

Acids turn blue litmus paper red
Bases turn red litmus paper blue

Hydrangea in Acidic Soil!

Cabbage Juice!

Acids Produce $\mathrm{H}_{3} \mathrm{O}^{+}$

Acid produce $\mathrm{H}_{3} \mathrm{O}^{+}$(hydronium ion)
$\mathrm{H}_{3} \mathrm{O}^{+}$is often abbreviated as " H^{+}"
In CHEM 42 we will sometimes use both notations. In some applications one notation is more useful/helpful/instructive.

Arrhenius Definition:

Acids Produce H^{+}and Bases Produce OH^{-}

$\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

$\mathrm{NaOH}(a q)$

$\mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)$

Hydronium Ion

Bronsted-Lowry Definition

Acid: Proton (H^{+}) donor
Base: Proton $\left(\mathrm{H}^{+}\right)$acceptor

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Problem 1

Identify the acid and base in the following acid-base reaction.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Problem 2

Identify the acid and base in the following acid-base reaction.
$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Problem 3

What do you notice about the two acids and two bases in the following chemical equation?

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Conjugate Acids and Bases

Conjugate Acids and Bases

Reactions of Acids and Bases

What are the products of the following acidbase reaction? Hint, consider how you solved precipitation reactions?
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{s}) \longrightarrow$

Neutralization Reactions

- Ionic compound that contains the cation from the base and the anion from the acid Acid + Base \longrightarrow Water + Salt

$\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KCl}(\mathrm{aq})$ Acid
 Base
 Water
 Salt

Why Does CO_{2} Make Water Acidic?

Source: Feely, Michard A., et al. (2006) Carbon Dioxide and Our Ocean Legacy. Pew Trust

Acidification of Water

Acid Rain Chemical Equations

$$
\begin{gathered}
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \\
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \\
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\
4 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})
\end{gathered}
$$

Carbonic Acid

Sulfurous Acid

Sulfuric Acid

Nitric Acid

Ocean Acidification

OCEAN ACIDIFICATION

Class Question!

\square When poll is active, respond at PollEv.com/matthewfonta586
四 Text MATTHEWFONTA586 to $\mathbf{2 2 3 3 3}$ once to join

What makes a strong acid strong and a weak acid weak?

确 No responses received yet. They will appear here...

Think-Pair Share

A strong cup of coffee is coffee that is more concentrated. Is a strong acid a more concentrated acid solution?

Strong Acids

TABLE 14.3 Strong Acids

hydrochloric acid (HCl) hydrobromic acid (HBr) hydroiodic acid (HI)
nitric acid $\left(\mathrm{HNO}_{3}\right)$
perchloric acid $\left(\mathrm{HClO}_{4}\right)$
sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ (diprotic)

Weak Acids

TABLE 14.4 Weak Acids

hydrofluoric sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ acid (HF) (diprotic)
acetic acid carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$
$\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) \quad$ (diprotic)
formic acid phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
$\left(\mathrm{HCHO}_{2}\right)$ (triprotic)

Strong Bases

TABLE 14.5 Strong Bases

lithium hydroxide (LiOH)
sodium hydroxide (NaOH) potassium hydroxide (KOH)
strontium hydroxide $\left(\mathrm{Sr}(\mathrm{OH})_{2}\right)$
calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$
barium hydroxide $\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)$

Weak Bases

TABLE 14.6 Some Weak Bases

Base

ammonia $\left(\mathrm{NH}_{3}\right)$
pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$
methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$
ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$
bicarbonate ion $\left(\mathrm{HCO}_{3}^{-}\right)^{*}$

Ionization Reaction

$$
\begin{aligned}
& \mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

*The bicarbonate ion must occur with a positively charged ion such as Na^{+}that serves to balance the charge but does not have any part in the ionization reaction. It is the bicarbonate ion that makes sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ basic.

Acid Strength is Determined by K_{a}

When K_{a} is INFINITY (or a VERY, VERY, large number), the acid is STRONG. This means for ONE mole of acid you get one mole of $\mathrm{H}_{3} \mathrm{O}^{+}$

When K_{a} is NOT INFINITY (in most cases a number less than 1), the acid is WEAK. This means that for MANY moles of acid, you get one mole of $\mathrm{H}_{3} \mathrm{O}^{+}$

Analogy

One strong person can lift one car

Many weak people can lift one car

Star Wars Analogy

Yoda is strong in the Force and can move Luke Skywalker's X-Wing

Luke is weak in the Force and cannot move his X -Wing

Problem 4

Identify each of the following as either a strong acid or a weak acid.

HI

HNO_{3}

HCHO_{2}
(Formic Acid)

Learning Outcomes

1. Demonstrate by example that water can act as an acid or a base.
2. Identify a solution as acidic, basic, or neutral.
3. Calculate the pH of a solution.
4. Explain why a difference of one pH unit is a factor of 10 difference in the hydronium ion concentration.
5. Explain what a buffer is and how blood pH is regulated with $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$.

Water Can Act As Either an Acid or a Base!

Water is amphoteric!

Quantifying a Solution as Acidic, Basic, or Neutral

Acidic: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$

Basic: $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}=K_{\mathrm{w}}$
Neutral: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\begin{array}{llllllllllllll}10^{-0} & 10^{-1} & 10^{-2} & 10^{-3} & 10^{-4} & 10^{-5} & 10^{-6} & 10^{-7} & 10^{-8} & 10^{-9} & 10^{-10} & 10^{-11} & 10^{-12} & 10^{-13}\end{array} 10^{-14}$

Acidic
Basic

pH Quantifies How Acidic or Basic A Solution Is

pH of Everyday Items!!

TABLE 14.7 The pH of Some Common
Substances

Substance	pH
gastric (human stomach) acid	$1.0-3.0$
limes	$1.8-2.0$
lemons	$2.2-2.4$
soft drinks	$2.0-4.0$
plums	$2.8-3.0$
wine	$2.8-3.8$
apples	$2.9-3.3$
peaches	$3.4-3.6$
cherries	$3.2-4.0$
beer	$4.0-5.0$
rainwater (unpolluted)	5.6
human blood	$7.3-7.4$
egg whites	$7.6-8.0$
milk of magnesia	10.5
household ammonia	$10.5-11.5$
4% NaOH solution	14

pH and pOH Definitions

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

$\mathrm{pH}+\mathrm{pOH}=14$

Problem 5

A solution has a $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of
$9.5 \times 10^{-9} \mathrm{M}$. Calculate the pH and determine whether the solution is acidic or basic.

pH is a Log Scale!!

$\mathrm{H}_{3} \mathrm{O}^{+}$Concentration (M)	$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
1×10^{-1}	1
1×10^{-2}	2
1×10^{-3}	3
1×10^{-4}	4
1×10^{-5}	5
1×10^{-6}	7
1×10^{-7}	8
1×10^{-8}	10
1×10^{-9}	11
1×10^{-10}	12
1×10^{-11}	13
1×10^{-12}	1×10^{-13}
1×10^{-14}	7
1	

pH	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$Representation
4	10^{-4}	\bigcirc
3	10^{-3}	0000000000
2	10^{-2}	

$\left(\begin{array}{lc}\text { Each circle } & 10^{-4} \mathrm{~mol} \mathrm{H}^{+} \\ \text {represents }\end{array}\right)$

Problem 6

Which of the following are possible?
(a) A pH between 1 and 14
(b) A pH less than 1
(c) ApH greater than 14
(d) A negative pH

Buffers

A buffer is a solution that resists pH change.

Buffer	pH Range
Acetate	$3.6-5.6$
Bis-Tris	$5.8-7.2$
Citrate $\left(\mathrm{pK}_{\mathrm{a} 1}\right)$	$2.2-6.5$
Citrate $\left(\mathrm{pK}_{\mathrm{a} 2}\right)$	$3.0-6.2$
Citrate $\left(\mathrm{pK}_{\mathrm{a} 3}\right)$	$5.5-7.2$
Methylamine	$9.5-11.5$
Phosphate $\left(\mathrm{pK}_{\mathrm{a} 1}\right)$	$1.7-2.9$
Phosphate $\left(\mathrm{pK}_{\mathrm{a} 2}\right)$	$5.8-8.0$
Succinate $\left(\mathrm{pK}_{\mathrm{a} 1}\right)$	$3.2-5.2$
Succinate $\left(\mathrm{pK}_{\mathrm{a} 2}\right)$	$5.5-6.5$

Buffers Resist pH Change When Acid is Added

Sodium Bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$

Added H^{+}is neutralized by the conjugate base

Buffers Resist pH Change When Base is Added

Added OH^{-}is neutralized by the weak acid.

Why Must You Wait 30 Minutes to Brush Your Teeth After Drinking a Cola?

1) Saliva has phosphate
2) Phosphate is a buffer!!

Demineralisation

Remineralisation

Problem 7

Blood must have a pH around 7.4. When the pH falls below 7.35 the body has acidosis and when the pH rises above 7.45 the body has alkalosis. When the pH deviates strongly from 7.4 the result is very harmful to the body. Which buffer do you think the body produces for the bloom steam to regulate the blood pH ?

Buffer	pH Range
Acetate	$3.6-5.6$
Bicarbonate	$5.1-7.1$
Citrate $\left(\mathrm{pK}_{\mathrm{a} 1}\right)$	$2.2-6.5$
Citrate $\left(\mathrm{pK}_{\mathrm{a} 2}\right)$	$3.0-6.2$
Methylamine	$9.5-11.5$
Phosphate $\left(\mathrm{pK}_{\mathrm{a} 1}\right)$	$1.7-2.9$
Succinate $\left(\mathrm{pK}_{\mathrm{a} 1}\right)$	$3.2-5.2$
Succinate $\left(\mathrm{pK}_{\mathrm{a} 2}\right)$	$5.5-6.5$

