

Chemical Bonds

Learning Outcomes

- 1. Name monoatomic and polyatomic ions.
- 2. Name binary ionic compounds and polyatomic ionic compounds (carbonate, hydroxide, nitrate, phosphate, ammonium, sulfate, and cyanide).
- 3. State the periodic trends for electronegativity.
- 4. Predict if two elements, based on their position in the periodic table, would form 1) polar covalent, 2) nonpolar covalent, or 3) ionic bonds.
- 5. Chemical Connections: Bone Chemistry.
- 6. Name molecular compounds.
- 7. Classify elements as atomic or molecular and classify compounds as ionic or molecular.

Monoatomic Ions

Na+: Sodium cation

Cl⁻: Chloride anion

TABLE 5.5 Some Common Anions					
Nonmetal	Symbol for Ion	Base Name	Anion Name		
fluorine	F ⁻	fluor-	fluoride		
chlorine	CI ⁻	chlor-	chloride		
bromine	Br^-	brom-	bromide		
iodine	Γ	iod-	iodide		
oxygen	0^{2-}	OX-	oxide		
sulfur	S ²⁻	sulf-	sulfide		
nitrogen	N ³⁻	nitr-	nitride		

Common Polyatomic Ions

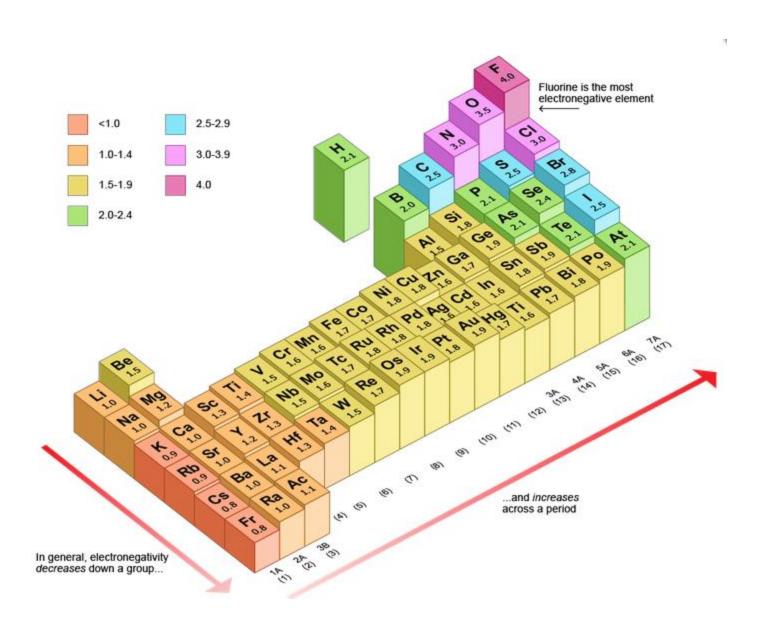
The names, formulas, and charges for the following polyatomic ions must be memorized for CHEM 60.

Common Polyatomic Ions				
Name	Formula	Name	Formula	
carbonate hydroxide	CO ₃ ²⁻ OH ⁻	phosphate ammonium	PO ₄ ³⁻ NH ₄ ⁺	
nitrate	NO ₃	sulfate cyanide	SO ₄ ²⁻ CN ⁻	

Naming Ionic Compounds: One Type of Cation

name of cation (metal) base name of anion (nonmetal) + -ide

NaCl Sodium Chloride


CaBr Calcium Bromide

KBr Potassium Bromide

Name the following ionic compounds.

- (a) MgO
- (b) MgCl₂
- (c) LiF
- (d) $CaCl_2$
- (e) CaO
- (f) CsCI
- (g) KCN
- (h) $(NH_4)_3PO_4$

Electronegativity Trends

Chemistry of Bones

https://www.youtube.com/watch?v=TzuCb8qgA8g

Chemical Safety of HF and Bones

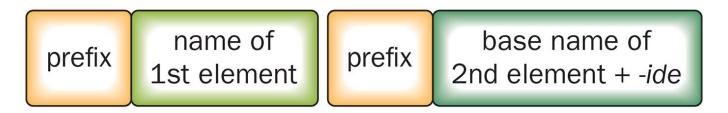
HF is a source of F⁻. When exposed to the skin, F⁻ penetrates the skin and reacts with CaCO₃ to produce CaF₂, H₂O, and CO₂.

$$2 \text{ HF} + \text{CaCO}_3 \longrightarrow \text{CaF}_2 + \text{H}_2\text{O} + \text{CO}_2$$

Naming Molecules

prefix

name of 1st element


prefix

base name of 2nd element + -ide

Prefix	Number
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7
octa	8
nona	9
deca	10

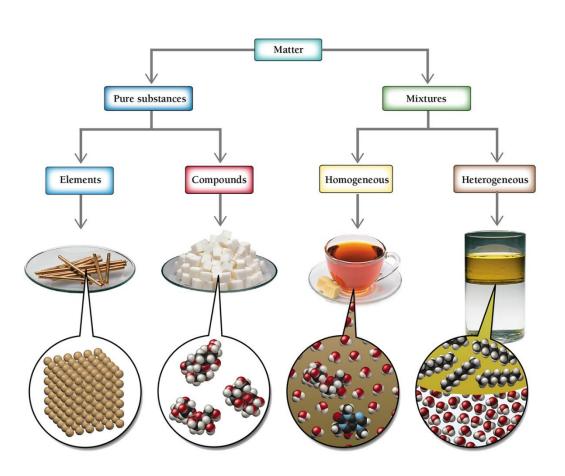
TABLE 5.5 Some Common Anions					
Nonmetal	Symbol for Ion	Base Name	Anion Name		
fluorine	F ⁻	fluor-	fluoride		
chlorine	CI ⁻	chlor-	chloride		
bromine	Br^-	brom-	bromide		
iodine	Γ	iod-	iodide		
oxygen	0^{2-}	OX-	oxide		
sulfur	S ²⁻	sulf-	sulfide		
nitrogen	N ³⁻	nitr-	nitride		

Naming Molecules

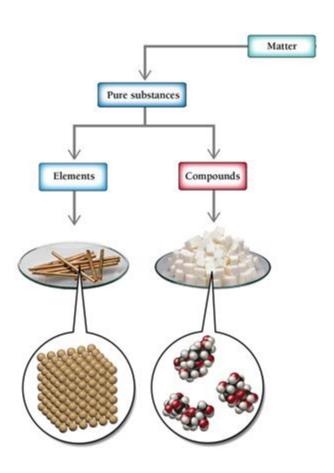
You omit the first element prefix if it is mono!

CO₂ Carbon Dioxide

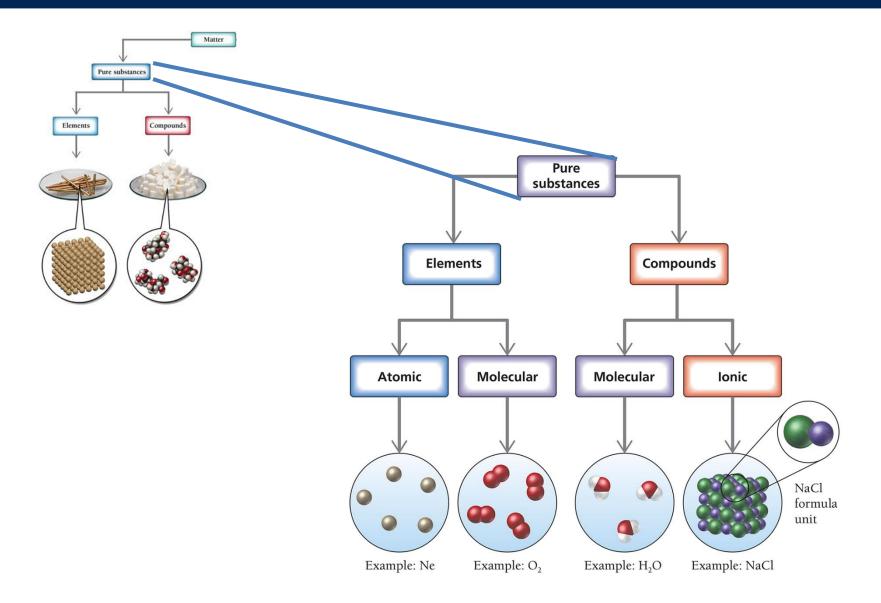
CO Carbon Monoxide

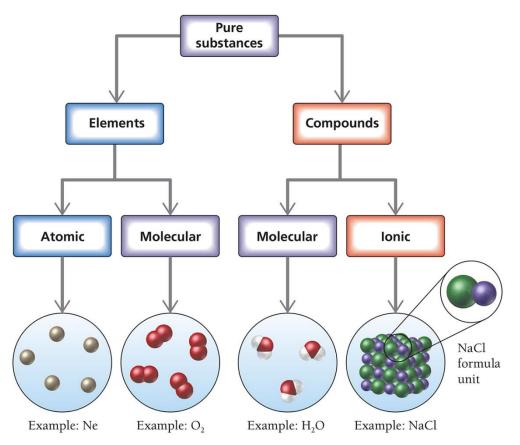

H₂O Dihydrogen Monoxide

H₂O₂ Dihydrogen Dioxide


CCI₄ Carbon Tetrachloride

CS₂ Carbon Disulfide

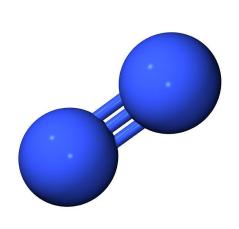

Review


Review

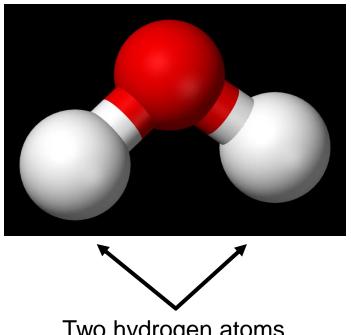
Molecular and Ionic Compounds

Molecular and Ionic Compounds

Molecule: Molecular Formula Ionic Compound: Formula Unit


Molecular Compound: Composed of two nonmetals lonic Compound: Composed of a metal and a nonmetal.

Does a molecule have to have more than one type of element?


Problem 2 - Solution

A molecule does *not* have to have more than one type of element!

One oxygen atom

Molecular Nitrogen (N₂)

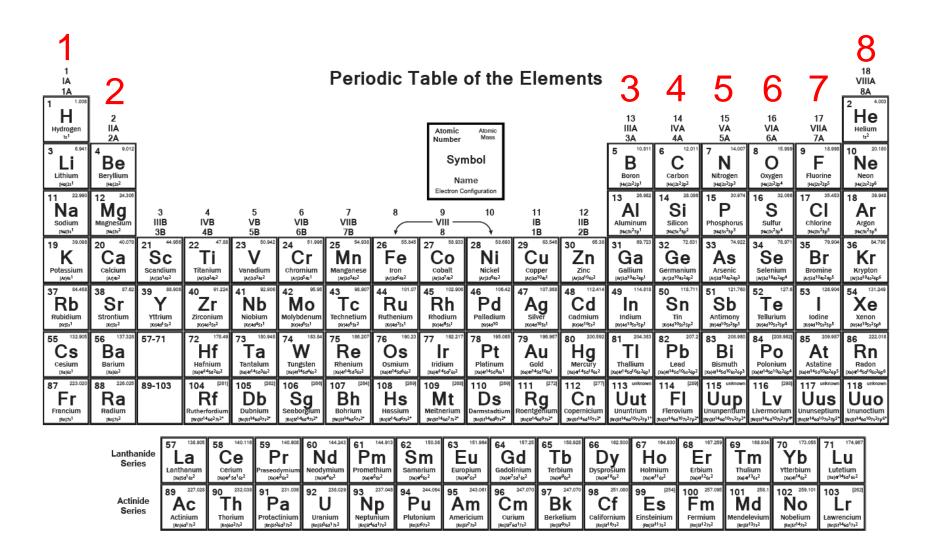
Two hydrogen atoms

Water Molecule (H₂O)

Identify each of the following as atomic or molecular elements?

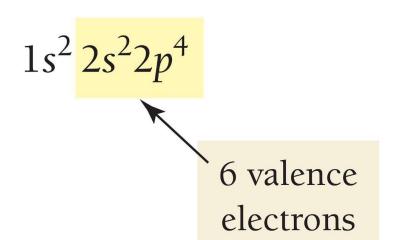
- (a) Oxygen
- (b) Neon
- (c) Argon
- (d) Nitrogen
- (e) Helium
- (f) Krypton

Identify each of the following as ionic compound or a molecular compound.


- (a) CO_2
- (b) NaCl
- (c) LiF
- (d) BaCl₂
- (e) CS₂
- (f) NO_2

Learning Outcomes

1. Interpret a Lewis structure


- 2. Write simple Lewis structures
- Determine whether a molecule is polar or nonpolar when given the molecular geometry.
 - 1. You will not be asked to predict the molecular geometry except for water (it is bent)

Review: The Periodic Table Tells Us How Many Valence Electrons an Element Has (s and p Block Only)

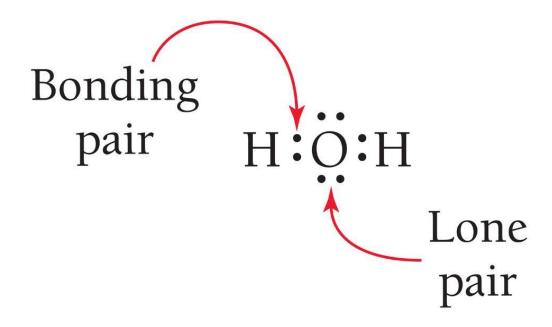
Lewis Structures: Valence Electrons Are Represented With Dots

Oxygen

6 dots representing valence electrons

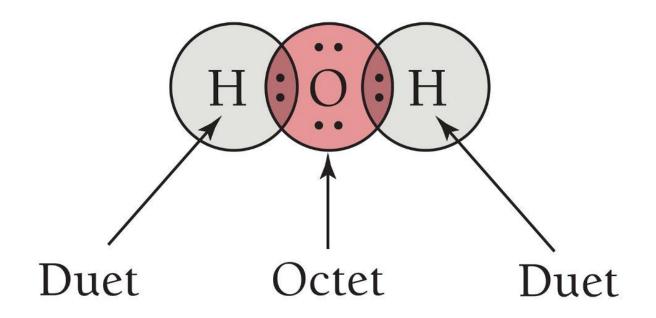
Write the Lewis structure for the following elements

- (a)Li
- (b) Be
- (c) C
- (d) N
- (e)O
- (f) F
- (g) Ne

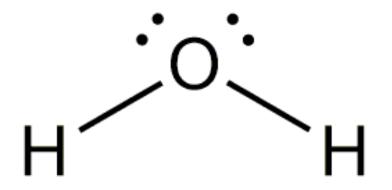

Problem 5 - Solution

Draw the Lewis structure for H₂O.

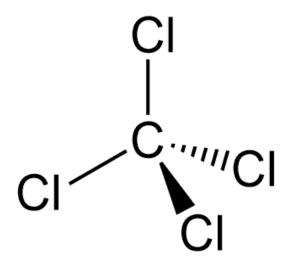
Covalent Lewis Structures


Two *shared* electrons represents a bond.

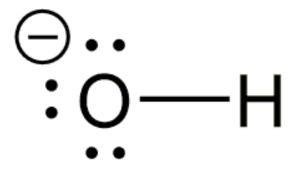
Nonbonding electrons are called a lone pair.


Octet "Rule"

In CHEM 60, hydrogen will have a *duet* and all other atoms will have an *octet*.


Note that in future classes there will be atom that can have more than 10 electrons!

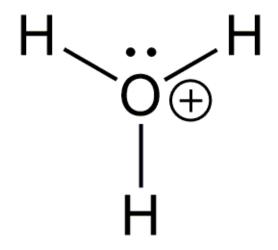
Problem 6 - Solution


Write the Lewis structure for CCI₄.

Problem 7 - Solution

Write the Lewis structure for OH-

Problem 8 - Solution



Write the Lewis structure for HCN.

Problem 9 - Solution

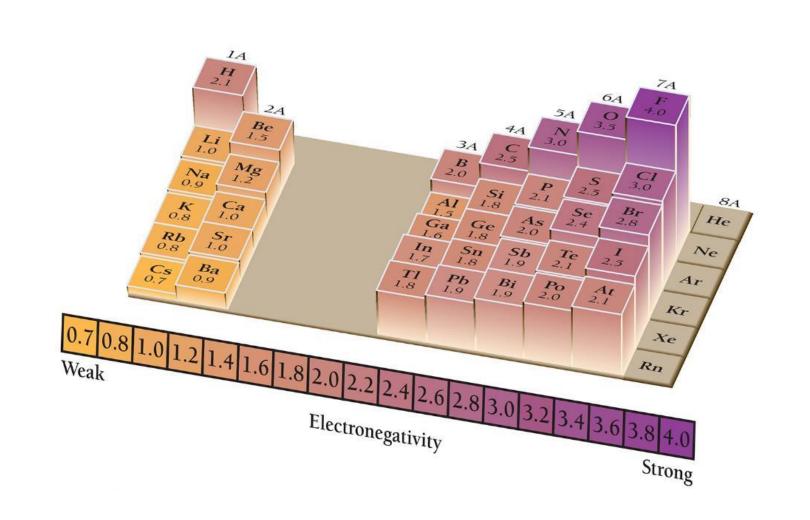
Write the Lewis structure for H₃O⁺.

Problem 10 - Solution

Evaluating Structures

Atoms that have octets should have octets

2. Minimize the magnitude of formal charge on an atom (this will be listed for you!)

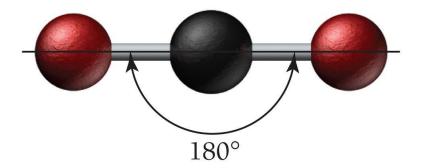

3. Minimize the number of atoms with formal charge

Which of the following Lewis structures for carbon monoxide is the best Lewis structure?

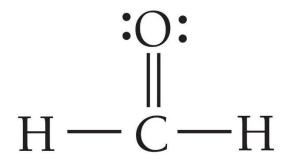
$$: \stackrel{\circ}{C} = \stackrel{\circ}{O}: \qquad : \stackrel{\circ}{C} = \stackrel{\circ}{O}: \qquad \stackrel{\circ}{C} = \stackrel{\circ}{O}: \qquad \stackrel{\circ}{O}: \stackrel{\circ}{C} = \stackrel{\circ}{O}: \qquad \stackrel{\circ}{O}: \stackrel{\circ}{C} = \stackrel{\circ}{O}: \qquad \stackrel{\circ}{C} = \stackrel{\circ}{C}: \qquad \stackrel{\circ}{C}: \qquad \stackrel{\circ}{C} = \stackrel{\circ}{C}: \qquad \stackrel{\circ}{C}: \qquad \stackrel{\circ}{C} = \stackrel{\circ}{C}: \qquad \stackrel{\circ}{$$

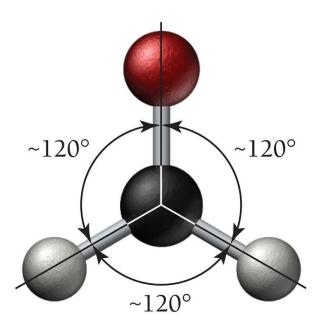
A B C D E

Electronegativity



Molecular Geometry


The shape of a molecule is important because it plays a key role in the reactivity and physical properties of the molecule.


Molecular Geometry

$$\ddot{0} = C = \ddot{0}$$
:

Molecular Geometry

Molecular Geometry Table

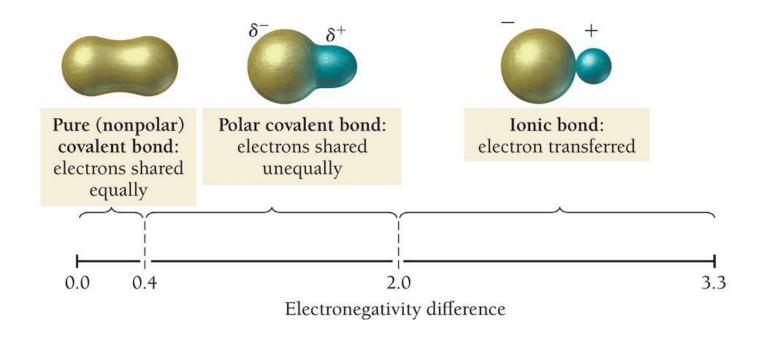
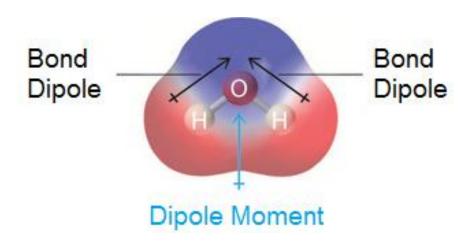

This table DOES NOT NEED TO BE memorized.

TABLE 10.1	Electron and	d Molecula	ar Geometries			
Electron Groups*	Bonding Groups	Lone Pairs	Electron Geometry	Angle between Electron Groups**	Molecular Geometry	Example
2	2	0	linear	180°	linear	:ö=c=ö: @=@=
3	3	0	trigonal planar	120°	trigonal planar	Ö: Н—С—Н
3	2	1	trigonal planar	120°	bent	:ö=ÿ-ö:
4	4	0	tetrahedral	109.5°	tetrahedral	H - C - H
4	3	1.	tetrahedral	109.5°	trigonal pyramidal	н-й-н Н
4	2	2	tetrahedral	109.5°	bent	н-ё-н

^{*} Count only electron groups around the central atom. Each of the following is considered one electron group: a lone pair, a single bond, a double bond, and a triple bond.

^{**} Angles listed here are idealized. Actual angles in specific molecules may vary by several degrees. For example, the bond angles in ammonia are 107° and the bond angle in water is 104.5°.

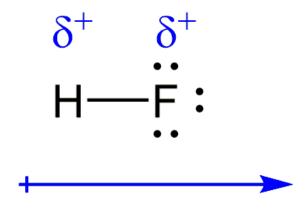
Polarity

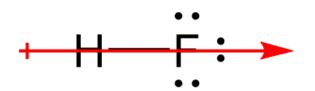

TABLE 10.2 The Effect of Electronegativity Difference on Bond Type							
Electronegativity Difference (Δ EN)	Bond Type	Example					
zero (0-0.4)	pure covalent	Cl_2					
intermediate (0.4–2.0)	polar covalent	HF					
large (2.0+)	ionic	NaCl					

Bond Dipole vs. Dipole Moment

A dipole moment is the vector (arrow) sum of the different bond dipoles

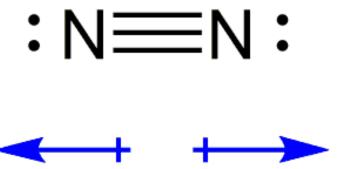
CHEM 60 Definition of Polar: If a molecule has a dipole moment it is polar.


CHEM Definition of Nonpolar: If a molecule has no dipole moment (bond dipoles cancel out) it is nonpolar.



Is HF polar?

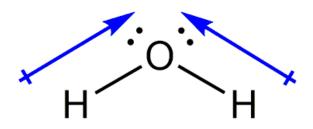
Problem 12 - Solution

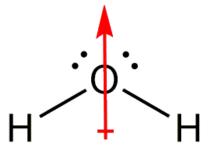

Bond Dipole

Dipole Moment

Is N₂ polar?

Problem 13 - Solution

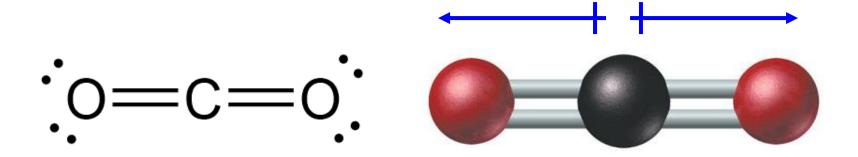

No Dipole Moment


Is H₂O polar?

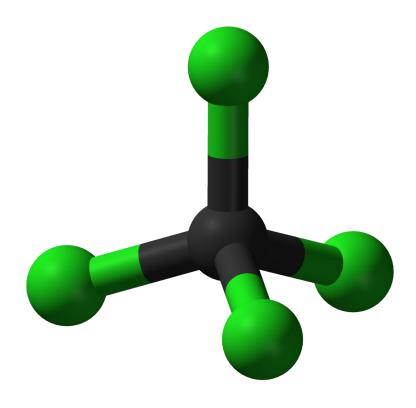
Problem 14 - Solution



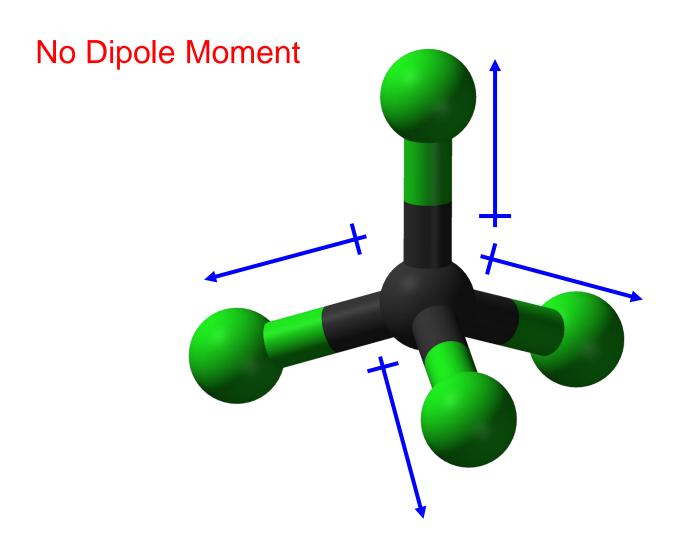
Bond Dipoles

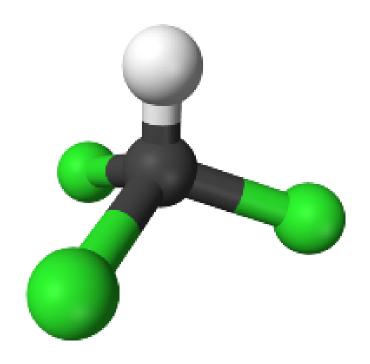

Dipole Moment

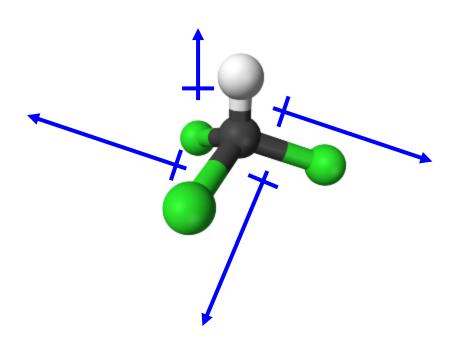
Is CO₂ polar?

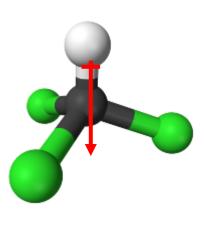


Problem 15 - Solution


No Dipole Moment


Is CCI₄ polar?


Problem 16 - Solution


Is CHCl₄ polar?

Problem 17 - Solution

Dipole Moment