

# Atoms

# Learning Outcomes

- 1. Understand the difference between 1) elements and compounds, 2) pure substances and mixtures.
- 2. Understand the difference between homogeneous and heterogeneous mixtures.
- 3. Describe the nuclear model of the atom and account for 1) where the protons and neutrons are located, 2) the charge and relative mass of protons, neutrons, and electrons, 3) where the electrons can be, 4) how much empty space is in the atom, and 5) where the majority of the atom's mass is located.
- 4. Determine the ion charge from the number of protons and electrons, and determine the number of protons and electrons in an ion.
- 5. State the relationship of two atoms to one another when the number of protons, neutrons, or electrons change.

## Matter Composition



\* Chemical methods of separation include electrolysis.

# **Question 1**

Classify the following matter:

- (a) Water  $(H_2O)$ .
- (b) Iron Metal
- (c) Lemonade
- (d) 3% Commercial Hydrogen Peroxide Solution
  - (H<sub>2</sub>O<sub>2</sub> dissolved in water)
- (e) Carbon Dioxide (CO<sub>2</sub>)
- (f) Gold in a River (gold in water)

## Matter Composition



\* Chemical methods of separation include electrolysis. <sup>†</sup> Physical methods of separation include filtration, distillation, and crystallization.

# Question 2

Classify the following matter:

(a) Apple Juice (sugar and other compounds dissolved in water)

(b) Salad Dressing(oil and vinegar mixed together with other solid matter)

(c) No-Pulp Orange Juice

(d) High-Pulp Orange Juice

# Learning Outcomes

- 1. Interpret an element's atomic symbol to determine the number of protons and name (for elements 1 through 36 in addition to Ag, Pt, Au, Hg, and Pb).
- 2. Determine atomic numbers, mass numbers, charge, and isotope symbols for an isotope based on the number of subatomic particles.
- 3. Describe Mendeleev's periodic law and explain why the periodic table is arranged in order of increasing atomic number.
- 4. Use the periodic table to classify elements by group and predict the charge for elements that form predictable ions.

### Atoms: The Smallest Unit of Matter

Similar to how LEGO bricks are the smallest pieces of a LEGO set, atoms are the smallest units that make up matter



### Atoms Observed Via Scanning Tunneling Microscopy (STM)



# History of Atomic Chemistry

0:00 to 5:25

https://www.youtube.com/watch?v=thnDxFd kzZs

#### Plum-Pudding Model: Uniform Distribution of Electrons in a Positive Charge Medium

Analogy: Positive Charge: Cake Medium Electrons: Plum Bits





### How to Test If the Plum Pudding Model Was Correct?



(a) Rutherford's expected result

### How to Test If the Plum Pudding Model Was Correct?

Rutherford's gold foil experiment



### How to Test If the Plum Pudding Model Was Correct?

Rutherford's gold foil experiment



# What Does the Atom Look Like?

The atom is made up of protons, neutrons, and electrons. They are called subatomic particles.



# Problem 3

If an atom is the size of a football stadium, which of the following objects when placed at the center of the stadium is the respective size of the nucleus?

(a) Grain of rice
(b) Marble
(c) Football
(d) Car
(e) Hot Air Balloon

### **Subatomic Particles**

| TABLE 4.1 | Subatomic Particles      |            |        |
|-----------|--------------------------|------------|--------|
|           | Mass (kg)                | Mass (amu) | Charge |
| proton    | $1.67262 	imes 10^{-27}$ | 1.0073     | 1+     |
| neutron   | $1.67493 	imes 10^{-27}$ | 1.0087     | 0      |
| electron  | $0.00091 	imes 10^{-27}$ | 0.00055    | 1-     |

 $1 \text{ amu} = 1.660539 \times 10^{-27} \text{ kg}$ 

# Elements Are Defined by Their Number of Protons (Atomic Number)



# Problem 4

Identify the following elements based on the number of protons they have.

(a) 2
(b) 6
(c) 8
(d) 29

## Problem 5

Which element is the following atom? (NOT drawn to scale!!)



Ions are Atoms that have Extra or Missing Electrons

**Cations: Positive Charge** 

#### Cats have paws!

Anions: Negative Charge



Ions are Atoms that have Extra or Missing Electrons

### **Cations: Positive Charge**

#### Cats have paws!

### **Anions: Negative Charge**



### Formation of Cations and Anions

Lithium cation formation:

### $Li \longrightarrow Li^+ + e^-$

Fluoride anion formation:

$$F + e^- \longrightarrow F^-$$

## Problem 6

### An atom has 8 electrons and is neutral. Which element is this atom?

### A General Chemical Symbol Also Includes the Mass Number



Z = # of protons X = Element symbol A = # of protons + # of neutrons (A = p + n or A = Z + n)

#### Isotopes Are Atoms With The Same Number of Protons But Different Number of Neutrons



Graduated from Analy high school in 1926!!

Why Are Element Masses Found on the Periodic Table Often Not Whole?



If chlorine has 17 protons and 17 neutrons shouldn't it have a mass of 34 amu and not 35.45 amu?

### Why Are Mass Numbers Often Not Whole?

| Isotope            | Natural Abundance (%) |
|--------------------|-----------------------|
| $^{35}\mathrm{Cl}$ | 75.77                 |
| $^{37}\mathrm{Cl}$ | 24.23                 |



 $m = (0.7577) (34.97 \text{ amu}) + (0.2423) (36.97 \text{ amu})_{{}_{35}\text{Cl}} (36.97 \text{ amu})$ 

m = 35.45 amu

# Learning Outcomes

- 1. Interpret an element's atomic symbol to determine the number of protons and name (for elements 1 through 36 in addition to Ag, Pt, Au, Hg, and Pb).
- 2. Determine atomic numbers, mass numbers, charge, and isotope symbols for an isotope based on the number of subatomic particles.
- 3. Describe Mendeleev's periodic law and explain why the periodic table is arranged in order of increasing atomic number.
- 4. Use the periodic table to classify elements by group and predict the charge for elements that form predictable ions.

# The Periodic Table!!

Interpret an element's atomic symbol to determine the number of protons and name (for elements 1 through 36 in addition to Ag, Pt, Au, Hg, and Pb).

|   | 1A<br>1  |          |          |                                                                                               |           |           | Me               | etals           |             |           |           |           |           |           |           |           |           | 8A<br>18        |
|---|----------|----------|----------|-----------------------------------------------------------------------------------------------|-----------|-----------|------------------|-----------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|
| 1 | 1<br>H   | 2A<br>2  |          | Nonmetals3A4A5AMetalloids131415                                                               |           |           |                  |                 |             |           |           |           |           |           |           |           | 7A<br>17  | 2<br>He         |
| 2 | 3<br>Li  | 4<br>Be  |          | 5         6         7         8         9           B         C         N         O         F |           |           |                  |                 |             |           |           |           |           |           |           |           | 10<br>Ne  |                 |
| 3 | 11<br>Na | 12<br>Mg | 3B<br>3  | 4B<br>4                                                                                       | 5B<br>5   | 6B<br>6   | 7B<br>7          | 8               | — 8B —<br>9 | 10        | 1B<br>11  | 2B<br>12  | 13<br>Al  | 14<br>Si  | 15<br>P   | 16<br>S   | 17<br>Cl  | 18<br>Ar        |
| 4 | 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti                                                                                      | 23<br>V   | 24<br>Cr  | 25<br>Mn         | 26<br>Fe        | 27<br>Co    | 28<br>Ni  | 29<br>Cu  | 30<br>Zn  | 31<br>Ga  | 32<br>Ge  | 33<br>As  | 34<br>Se  | 35<br>Br  | 36<br>Kr        |
| 5 | 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr                                                                                      | 41<br>Nb  | 42<br>Mo  | 43<br>Tc         | 44<br>Ru        | 45<br>Rh    | 46<br>Pd  | 47<br>Ag  | 48<br>Cd  | 49<br>In  | 50<br>Sn  | 51<br>Sb  | 52<br>Te  | 53<br>I   | 54<br>Xe        |
| 6 | 55<br>Cs | 56<br>Ba | 57<br>La | 72<br>Hf                                                                                      | 73<br>Ta  | 74<br>W   | 75<br>Re         | 76<br>Os        | 77<br>Ir    | 78<br>Pt  | 79<br>Au  | 80<br>Hg  | 81<br>Tl  | 82<br>Pb  | 83<br>Bi  | 84<br>Po  | 85<br>At  | 86<br><b>Rn</b> |
| 7 | 87<br>Fr | 88<br>Ra | 89<br>Ac | 104<br>Rf                                                                                     | 105<br>Db | 106<br>Sg | 107<br><b>Bh</b> | 108<br>Hs       | 109<br>Mt   | 110<br>Ds | 111<br>Rg | 112<br>Cn | 113<br>Nh | 114<br>Fl | 115<br>Mc | 116<br>Lv | 117<br>Ts | 118<br>Og       |
|   |          |          |          |                                                                                               |           |           |                  |                 |             |           |           |           |           |           |           |           |           |                 |
|   |          | 22       | Lantha   | nides                                                                                         | 58<br>Ce  | 59<br>Pr  | 60<br>Nd         | 61<br><b>Pm</b> | 62<br>Sm    | 63<br>Eu  | 64<br>Gd  | 65<br>Tb  | 66<br>Dy  | 67<br>Ho  | 68<br>Er  | 69<br>Tm  | 70<br>Yb  | 71<br>Lu        |
|   |          |          | Acti     | nides                                                                                         | 90<br>Th  | 91<br>Pa  | 92<br>U          | 93<br>Np        | 94<br>Pu    | 95<br>Am  | 96<br>Cm  | 97<br>Bk  | 98<br>Cf  | 99<br>Es  | 100<br>Fm | 101<br>Md | 102<br>No | 103<br>Lr       |

## Problem 7

| Isotope Name | Isotope Symbol | Atomic $\#$ | ${\rm Mass}~\#$ | Protons | Neutrons | Electrons | Charge |
|--------------|----------------|-------------|-----------------|---------|----------|-----------|--------|
|              |                |             |                 | 12      | 12       |           | 2+     |
|              |                |             | 19              | 9       |          |           | 0      |

#### When Placed in the Order of The Periodic Table, Properties of the Elements can be Predicted

The properties (colors) of these elements form a repeating pattern.

| 1 | 2  | 3  | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|---|----|----|----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| Η | He | Li | Be | В | С | Ν | 0 | F | Ne | Na | Mg | Al | Si | Р  | S  | Cl | Ar | K  | Са |

### A Vertical Arrangement Is More Insightful

Elements with similar properties align in vertical columns.

| 1<br>H  |          |    |    |    |    |    | 2<br>He |
|---------|----------|----|----|----|----|----|---------|
| 3       | 4        | 5  | 6  | 7  | 8  | 9  | 10      |
| Li      | Be       | B  | C  | N  | O  | F  | Ne      |
| 11      | 12       | 13 | 14 | 15 | 16 | 17 | 18      |
| Na      | Mg       | Al | Si | P  | S  | Cl | Ar      |
| 19<br>K | 20<br>Ca |    |    |    |    |    |         |

## The Periodic Table!!

|   | 1A<br>1  |          |          |           |           |           | Me               | etals           |             |                  |           |           |           |                 |           |           |           | 8A<br>18        |
|---|----------|----------|----------|-----------|-----------|-----------|------------------|-----------------|-------------|------------------|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------------|
| 1 | 1<br>H   | 2A<br>2  |          |           |           | Ļ         |                  | 3A<br>13        | 4A<br>14    | 5A<br>15         | 6A<br>16  | 7A<br>17  | 2<br>He   |                 |           |           |           |                 |
| 2 | 3<br>Li  | 4<br>Be  |          |           |           | L         |                  | 5<br>B          | 6<br>C      | 7<br>N           | 8<br>0    | 9<br>F    | 10<br>Ne  |                 |           |           |           |                 |
| 3 | 11<br>Na | 12<br>Mg | 3B<br>3  | 4B<br>4   | 5B<br>5   | 6B<br>6   | 7B<br>7          | 8               | — 8B —<br>9 | 10               | 1B<br>11  | 2B<br>12  | 13<br>Al  | 14<br>Si        | 15<br>P   | 16<br>S   | 17<br>Cl  | 18<br>Ar        |
| 4 | 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti  | 23<br>V   | 24<br>Cr  | 25<br>Mn         | 26<br>Fe        | 27<br>Co    | 28<br>Ni         | 29<br>Cu  | 30<br>Zn  | 31<br>Ga  | 32<br>Ge        | 33<br>As  | 34<br>Se  | 35<br>Br  | 36<br>Kr        |
| 5 | 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr  | 41<br>Nb  | 42<br>Mo  | 43<br>Tc         | 44<br>Ru        | 45<br>Rh    | 46<br>Pd         | 47<br>Ag  | 48<br>Cd  | 49<br>In  | 50<br>Sn        | 51<br>Sb  | 52<br>Te  | 53<br>I   | 54<br>Xe        |
| 6 | 55<br>Cs | 56<br>Ba | 57<br>La | 72<br>Hf  | 73<br>Ta  | 74<br>W   | 75<br>Re         | 76<br><b>Os</b> | 77<br>Ir    | 78<br><b>P</b> t | 79<br>Au  | 80<br>Hg  | 81<br>Tl  | 82<br>Pb        | 83<br>Bi  | 84<br>Po  | 85<br>At  | 86<br><b>Rn</b> |
| 7 | 87<br>Fr | 88<br>Ra | 89<br>Ac | 104<br>Rf | 105<br>Db | 106<br>Sg | 107<br><b>Bh</b> | 108<br>Hs       | 109<br>Mt   | 110<br>Ds        | 111<br>Rg | 112<br>Cn | 113<br>Nh | 114<br>Fl       | 115<br>Mc | 116<br>Lv | 117<br>Ts | 118<br>Og       |
|   |          |          |          |           |           |           |                  |                 |             |                  |           |           |           |                 |           |           |           |                 |
|   |          |          | Lantha   | nides     | 58<br>Ce  | 59<br>Pr  | 60<br>Nd         | 61<br><b>Pm</b> | 62<br>Sm    | 63<br>Eu         | 64<br>Gd  | 65<br>Tb  | 66<br>Dy  | 67<br><b>Ho</b> | 68<br>Er  | 69<br>Tm  | 70<br>Yb  | 71<br>Lu        |
|   |          |          | Acti     | nides     | 90<br>Th  | 91<br>Pa  | 92<br>U          | 93<br>Np        | 94<br>Pu    | 95<br>Am         | 96<br>Cm  | 97<br>Bk  | 98<br>Cf  | 99<br>Es        | 100<br>Fm | 101<br>Md | 102<br>No | 103<br>Lr       |

## Metals





Properties: Conducts heat and electricity, malleable, typically shiny, tend to lose electrons in chemical reactions

### Nonmetals





Sulphur

Carbon

### Properties: Poor conductors and tend to gain electrons in chemical reactions

# Semiconductors (Metalloids)





Silicon wafer after die cutting. This prepares many integrated circuits. A die is an integrated circuit.

Germanium

# Properties: Intermediate between metals and nonmetals.

### Semiconductors Absorb Visible Light!



#### Mono-crystalline solar cell panel

### Elements in the Periodic Table Can be Further Sub-classified

For CHEM 42 it is especially important to identify the transition metals, halogens, and noble gases.

| Alk:<br>met             | ali<br>als                        |     |         |                                            |          |          |          |          |                 |          |          |          |          |          |     |         | 0         | Noble<br>gases |
|-------------------------|-----------------------------------|-----|---------|--------------------------------------------|----------|----------|----------|----------|-----------------|----------|----------|----------|----------|----------|-----|---------|-----------|----------------|
| ļ                       | Alkaline<br>earth metals Halogens |     |         |                                            |          |          |          |          |                 |          |          |          |          |          |     | s↓      |           |                |
| 1                       |                                   |     |         |                                            |          |          |          |          |                 |          |          |          |          |          |     |         | 8A        |                |
|                         | 1                                 | ↓ ↓ |         | Group numbers                              |          |          |          |          |                 |          |          |          |          |          |     |         |           | 2              |
| ł                       | H                                 | 2A  |         | 3A 4A 5A 6A 7A                             |          |          |          |          |                 |          |          |          |          |          |     |         |           | He             |
|                         | 3                                 | 4   |         |                                            |          | 6        | 7        | 8        | 9               | 10       |          |          |          |          |     |         |           |                |
| I                       | i                                 | Be  |         |                                            |          | Ν        | 0        | F        | Ne              |          |          |          |          |          |     |         |           |                |
| 1                       | 1                                 | 12  |         | Transition metals $13$ $14$ $15$ $16$ $17$ |          |          |          |          |                 |          |          |          |          |          |     |         |           | 18             |
| N                       | la                                | Mg  |         | Iransition metals                          |          |          |          |          |                 |          |          |          |          |          |     |         | Ar        |                |
| 1                       | 0                                 | 20  | 21      | 22                                         | 22       | 24       | 25       | 26       | 27              | 20       | 20       | 30       | 21       | 22       | 22  | 24      | 25        | 26             |
| L L                     | 9<br>z                            | 20  | 21      | ZZ<br>Ti                                   | 25<br>V  | 24<br>Cr | 25<br>Mn | 20<br>Fe | $\frac{27}{Co}$ | Z0<br>Ni | 29<br>Cu | 50<br>7n | Ga       | 52<br>Ge |     | 54      | 33<br>Br  | 50<br>Kr       |
|                         | ~                                 | Ca  | 30      | 11                                         | V        | CI       | IVIII    | IC       | 0               | INI      | Cu       | LII      | Ua       | UC       | AS  | 50      | DI        |                |
| 3                       | 7                                 | 38  | 39      | 40                                         | 41       | 42       | 43       | 44<br>D  | 45              | 46       | 47       | 48       | 49       | 50       | 51  | 52<br>T | 53        | 54             |
| R                       | b                                 | Sr  | Y       | Zr                                         | Nb       | Mo       | Ic       | Ru       | Rh              | Pd       | Ag       | Cd       | In       | Sn       | Sb  | le      | 1         | Xe             |
| 5                       | 5                                 | 56  | 57      | 72                                         | 73       | 74       | 75       | 76       | 77              | 78       | 79       | 80       | 81       | 82       | 83  | 84      | 85        | 86             |
| C                       | Cs                                | Ba  | La      | Hf                                         | Ta       | W        | Re       | Os       | Ir              | Pt       | Au       | Hg       | Tl       | Pb       | Bi  | Ро      | At        | Rn             |
| 8                       | 7                                 | 88  | 89      | 104                                        | 105      | 106      | 107      | 108      | 109             | 110      | 111      | 112      | 113      | 114      | 115 | 116     | 117       | 118            |
| F                       | r                                 | Ra  | Ac      | Rf                                         | Db       | Sg       | Bh       | Hs       | Mt              | Ds       | Rg       | Cn       | Nh       | Fl       | Mc  | Lv      | Ts        | Og             |
|                         |                                   |     |         |                                            |          |          |          |          |                 |          |          |          |          |          |     |         |           |                |
|                         |                                   |     |         | B                                          | 58       | 59       | 60       | 61       | 62              | 63       | 64       | 65       | 66       | 67       | 68  | 69      | 70        | 71             |
|                         |                                   | Lan | thani   | des                                        | Ce       | Pr       | Nd       | Pm       | Sm              | Eu       | Gd       | Tb       | Dy       | Ho       | Er  | Tm      | Yb        | Lu             |
|                         |                                   |     |         |                                            | 00       | 01       | 02       | 03       | 04              | 05       | 06       | 07       | 08       | 00       | 100 | 101     | 102       | 102            |
|                         |                                   | P   | Actinio | des                                        | 90<br>Th | Pa       | 92<br>11 | 95<br>Nn | 94<br>Pu        | Am       | 90<br>Cm | 97<br>Bk | 98<br>Cf | 99<br>Fs | Fm  | Md      | 102<br>No | IUS<br>Ir      |
| III ra U Np ru Am Cm BK |                                   |     |         |                                            |          |          |          |          |                 | DK       | CI       | LS       | 1 m      | witu     | 140 | LI      |           |                |

#### The Periodic Tables Makes it Easier to Predict The Ionic Charge

