Steps for Making a Confidence interval				
	Proportions		Means	
	7.1 1propZinterval	9.1 2propZinterval	7.2 Tinterval	9.2 2sampTinterval
1) Requirements Simple Random Sample (SRS) & Large Enough	$\mathbf{n} \cdot p > 5, n \cdot q > 5$	$n_{1} \cdot p_{1} > 5$ $n_{1} \cdot q_{1} > 5$ $n_{2} \cdot p_{2} > 5$ $n_{2} \cdot q_{2} > 5$	n>30 or population normal	n1,n2 > 30 or population normal
2) Summary Statistics	n = sample size x = number of successes	$n_1, x_{1,}, n_2, x_2$	x = sample mean s=sample standard deviation n= sample size	\bar{x}_1 , s_1 , n_1 ; \bar{x}_2 , s_2 , n_2
3) Point Estimate: Our best guess of population parameter based on sample	PE: $\hat{p} = \frac{x}{n}$	PE: $\hat{p}_1 - \hat{p}_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2}$	PE: $ar{x}$	$PE: \bar{x}_2 - \bar{x}_2$
4) Critical value The Z-score or T- Score that will correspond to the confidence level, CL	$\alpha = 1 - CL$ $z_{\alpha/2} = invnorm\left(1 - \frac{\alpha}{2}, 0, 1\right)$		$\alpha = 1 - CL$ $t\alpha_{/2} = invT\left(1 - \frac{\alpha}{2}, df\right)$	
5) Margin of Error Maximum likely difference between Population parameter and sample statistic.	$E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$	2PropZinterval	$E = t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$	2SampTinterval
6) Confidence interval	$\hat{p} - E$	$\hat{p}_1 - \hat{p}_2 - E$ $< p_1 - p_2 <$ $\hat{p}_1 - \hat{p}_2 + E$	$\bar{x} - E < \mu < \bar{x} + E$	$\bar{x}_2 - \bar{x}_2 < \mu_1 - \mu_2$ < $\bar{x}_2 - \bar{x}_2$
7) Write Sentence: We are CL confident that the true is between LB and UB	population proportion	difference in the population proportions	population mean	difference in population means
Finding Sample Size	$n = \frac{z_{\alpha/2}^2 \hat{p}\hat{q}}{E^2}$ $n = \frac{z_{\alpha/2}^2 \cdot 0.25}{E^2}$		$n = \left(\frac{Z_{\alpha/2} \cdot S}{E}\right)^2$	