Physics P20: Exam 2. Practice
Name: \qquad
Write directly on these sheets. Show work. You may use a calculator. You may use the 3×5 card if you brought one; staple it to the exam. The exam ends with word "END". The total score is 40pts.

Problem 1 (8pts) The figure shows a 0.3 kg baseball just before and just after it collides with a bat. Just before, the ball has velocity \vec{v}_{1} of magnitude $12.0 \mathrm{~m} / \mathrm{s}$. Just after, it returns in the opposite direction with velocity \vec{v}_{2} of magnitude $10.0 \mathrm{~m} / \mathrm{s}$. The duration of
 the collision is 2 ms .
a) What are the magnitude and direction of the impulse on the ball from the bat?
b) What are the magnitude and direction of the average force on the ball from the bat?

Problem 2 (5pts): Dan is gliding his skateboard at $5 \mathrm{~m} / \mathrm{s}$. He suddenly jumps backward off the skateboard, kicking the skateboard forward $7 \mathrm{~m} / \mathrm{s}$. How fast is Dan going as his feet hit the ground? Dan's mass is 70 kg and the skateboard's mass is 5 kg .

Problem 3 (8pts): A 10-kg ladder is supported by a wall, 4 m along the wall and 2 m along floor, as shown in the figure. The wall is frictionless, but the floor has a coeffcient of static friction of 0.2 with the ladder. A $70-\mathrm{kg}$ person climbs to the height of 3 m along the ladder.
a) Draw the FBD of the ladder

b) Calculate the magnitude and direction of the force by the wall on the ladder. Answer in N.
c) Calculate the magnitude and direction of the force by the floor on the ladder. Answer in N and degrees.

Problem 4 (7pts) A block of mass $m=0.8$ kg is released from rest at the top of a frictionless circular ramp of radius $R=1.5$ m . At the bottom, it continues to travel on the horizontal segment of length $d=2 \mathrm{~m}$ with coefficient of kinetic friction $\mu_{\mathrm{k}}=0.15$
 between the surfaces of the block and the d, with friction track. The block then compresses the spring to a distance x and comes to a momentary stop, on a frictionless surface again. The spring $k=100 \mathrm{~N} / \mathrm{m}$.
a) Calculate x. Answer in meters. 4pts.
b) If the radius of the circular track is too small (so the initial height is too small), the block might not make it to the spring and compress it. What is the minimum radius of the circular track, so that the block just touches the spring, but not compress it? Answer in meters. 3pts

Problem 5 (7pts) A solid 2-kg disk is initially rolling without slipping along a flat, level surface. It then rolls up an incline, coming momentarily to rest as shown.
a) Calculate the radius of the disk. Answer in m.

b) Calculate the moment of inertia for the disk, about the disk's axis. Answer in $\mathrm{kg} \mathrm{m}{ }^{2}$
c) Calculate the height h at which the disk stops above the level surface (see the figure). Answer in m.

MC Questions (1pt each)

1. A skier weighing 0.80 kN comes down a frictionless ski run that is circular $(\mathrm{R}=30 \mathrm{~m})$ at the bottom, as shown. If her speed is $12 \mathrm{~m} / \mathrm{s}$ at point A , what is her speed at the bottom of the hill (point B)?

$17 \mathrm{~m} / \mathrm{s}$
$19 \mathrm{~m} / \mathrm{s}$
$20 \mathrm{~m} / \mathrm{s}$
$18 \mathrm{~m} / \mathrm{s}$
$12 \mathrm{~m} / \mathrm{s}$
2. A champion athlete can produce one horsepower (746 W) for a short period of time. If a $70-\mathrm{kg}$ athlete were to bicycle to the summit of a $500-\mathrm{m}$ high mountain while expending power at this rate, she would have used at least \qquad J of energy.
3.43×10^{5}
746
7.46×10^{5}
3.73×10^{5}
2.61×10^{7}
3. A $3.0-\mathrm{kg}$ object moving in the positive x direction has a one-dimensional elastic collision with a $5.0-\mathrm{kg}$ object initially at rest. After the collision the $5.0-\mathrm{kg}$ object has a velocity of $6.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction. What was the initial speed of the 3.0 kg object?
$7.0 \mathrm{~m} / \mathrm{s}$
$8.0 \mathrm{~m} / \mathrm{s}$
$6.0 \mathrm{~m} / \mathrm{s}$
$5.5 \mathrm{~m} / \mathrm{s}$
$4.5 \mathrm{~m} / \mathrm{s}$
4. A wheel rotating about a fixed axis with a constant angular acceleration of $2.0 \mathrm{rad} / \mathrm{s} 2 \mathrm{turns}$ through 2.4 revolutions during a $2.0-\mathrm{s}$ time interval. What is the angular velocity at the end of this time interval?
$9.5 \mathrm{rad} / \mathrm{s}$
$9.7 \mathrm{rad} / \mathrm{s}$
$8.8 \mathrm{rad} / \mathrm{s}$
$9.3 \mathrm{rad} / \mathrm{s}$
$9.1 \mathrm{rad} / \mathrm{s}$
5. The rigid body shown rotates about an axis through its center of mass and perpendicular to the paper. If $M=2.0 \mathrm{~kg}$ and $\mathrm{L}=80 \mathrm{~cm}$, what is the kinetic energy of this object when its angular speed about this axis is equal to $5.0 \mathrm{rad} / \mathrm{s}$? Neglect the mass of the connecting rod and treat the masses as particles.

23 J

26 J
12 J
15 J
18 J
Point mass at a radius R

Note: All formulas shown assume objects of uniform mass density.

