Section 2.1
Stem-and-Leaf Displays The following graph gives the percentages of each state's total number of college or university student loans that are in default for the 50 states and the District of Columbia.

Stem-and-leaf of Percent $\mathrm{N}=51$ Leaf Unit $=1.0$

1	0	3
3	0	55
11	0	66666777
23	0	888888999999
(11)	1	00000011111
17	1	2222233
10	1	444555
4	1	667
1	1	
1	2	0

1. The above graph is a Stem and Leaf Display.
2. Alaska is the state with the highest percentage of student loans in default. What is that default rate?
3. Wyoming is the state with the lowest percentage of student loans in default. What is that default rate?
4. What percent of states (and DC) have at least 10% of their student loans in default?

Example: We will organize the following data into a stem and leaf display.

Are cigarettes bad for people? Cigarette smoking involves tar, carbon monoxide and nicotine. Nicotine can cause addiction. The following data provides the nicotine level per cigarette (in mg) of a random sample of brands of cigarettes. Construct a Stem-and-Leaf Display with five leaves per stem.

$$
0.1,0.4,0.4,0.5,0.6,0.6,0.6,0.7,0.7,0.7,0.8,0.8,0.9,0.9,0.9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.1,1.2,
$$ 2.0

1. Identify the variable.
2. The brand of cigarettes called Now cigarettes has the lowest amount of nicotine per cigarette. According to the graph above, what is the nicotine level for each Now cigarette?
3. The brand of cigarettes called Bull Durham cigarettes has the highest amount of nicotine per cigarette. According to the graph above, what is the nicotine level for each Bull Durham cigarette?
4. What percent of cigarette brands have less than 1.0 mg of nicotine per cigarette?

Your turn!

Get into groups of 2 to 4 students.
Your assignment is to arrange the following data into two different displays. The first is a histogram with four classes and a stem and leaf display where you have two rows per stem. Turn in one paper per group with everyone's names on it:
$5,6,10,26,14,28,23,15,21,28,24,27,9,16,16,19,0,4,3,12,17,21,25,10,11$, $20,29,12,15,16,6,5,3,8,7,4,18,19,12,15,14,4,10,12,16,17,7,16,12,20,4,4,8,8$

Example

The International Rhino Federation estimates that there are 17800 rhinoceroses living in the wild in Africa and Asia. A Breakdown of the number of rhinos of each species is reported in the accompanying table:

Rhino Species	Population Estimate
African Black	3610
African White	11330
Asian Sumatran	300
Asian Javan	60
Asian Indian	2500

1. What type of graph is displayed above?
2. Is this a Pareto chart? If not, how would the above graph need to be changed in order to make it a Pareto chart?
3. What percentage of rhinos are Asian?

Example

1. What type of graph is displayed above?
2. Is it true that a majority of rhinos are African White? Explain.
3. What percentage of rhinos are Asian?

Section 2.2

Example

Pyramid Lake, Nevada, is described as the pride of the Paiute Indian Nation. It is a beautiful desert lake famous for very large trout. The elevation of the lake surface (feet above sea level) varies according to the annual flow of the Truckee River from Lake Tahoe. The U.S. geological Survey provided the following data:

Yr.	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
El.	3808	3803	3798	3797	3795	3797	3802	3807	3811	3816	3817

1. What type of graph is displayed above?
2. In the first part of the 1990's, is the lake surface elevation increasing or decreasing?
3. In the second part of the 1990 's, is the lake surface elevation increasing or decreasing?

Basic Graph Shapes: Identify the following Histogram Graph shapes:

1. Describe the shape of the graph.
2. What percent of students have an IQ score of at least 108 ?
3. What is the IQ score such that 10% of the IQ scores are this value or bigger?

Lower CL	Upper CL	Lower CB	Upper CB	Frequency	Relative Frequency
4.					

Example:

For the following data, fill out the table and graph the histogram and Ogive with five classes.
$24,25,25,27,27,29,30,35,35,35,36,38,38,39,39,40,40,40,45,45,45,45,47,52,52,52,58,59$, $59,61,61,67,68,68,68$

Lower CL	Upper CL	Lower CB	Upper CB	Freq.	Rel. Freq.	Cumul. Freq.	Midp.

Example: Create a histogram for the following data, use five classes:
$24,25,25,27,27,29,30,|35,35,35,36,38,38,39,39,40,40,40,|45,45,45,45,47| 52,52,52,58,59,$, $59, \mid 61,61,67,68,68,68$

Example:

The following data represent highway fuel consumption in miles per gallon (mpg) for a random sample of 50 models of cars. Each dot represents one car. Use the graph below to answer the questions.

1. The following is called a Dot Plot
2. Does this data set appear to have any outliers? Explain.
3. What percent of the cars have a fuel consumption of at least 30 mpg ?

Section 2.3

Example Consider the following data set:

$$
2,2,2,4,5,5,7,7,8,8,8,9
$$

- Find the Median.
- Find the 75th percentile.
- Find the 33rd percentile.

Calculator Fun Under the STAT menu, select Edit
Enter the following data set into your calculator list 1:

3	5	6	9	2	5	6	4	7	2	12	7
5	6	7	3	8	9	2	5	4	7	5	6
6	7	3	6	10	3	1	7	3	6	3	8
7	7	3	5	1	7	4	9	3	8	3	9

We will use our calculators to find the median.

Section 2.4

Example Consider the following random sample of test scores (in percentages) from a biology final exam.

$$
95,65,70,75,74,86,82,95,45,80,72,70,78,72,80
$$

1. Find the five-number summary for this data set.
2. Make a box-and-whisker plot.

Example

1. Locate the values of the five-number summary on the graph below.
2. Describe the shape of the distribution.
3. Does this data set contain any outliers? Explain.

Section 2.6

$$
10,26,14,28,23,15,21,24,27,9,16,16,19,1,12,17,21,25,10,11,
$$

$$
20,12,15,16,8,7,18,19,12,15,14,10,12,16,17,7,16,12,20,8,8
$$

Example Does this data have any outliers using the interquartile range version of the definition.

Example

a. For runners in a race, a low time means a faster run. The winners in a race have the shortest running times. Is it more desirable to have a finish time with a high or a low percentile when running a race?
b. The 20th percentile of run times in a particular race is 5.2 minutes. Write a sentence interpreting the 20th percentile in the context of the situation.
c. A bicyclist in the 90th percentile of a bicycle race between two towns completed the race in 1 hour and 12 minutes. Is he among the fastest or slowest cyclists in the race? Write a sentence interpreting the 90 th percentile in the context of the situation.
d. Students GPAs and scores on standardized tests (SATs and ACTs) are entered into a formula that calculates an "admissions index" score. The admissions index score is used to set eligibility standards intended to meet the goal of admitting the top 12% of high school students in the state. In this context, what percentile does the top 12% represent?

Section 2.5

Example:

Under the STAT menu, select Edit
Enter the following data set into your calculator list 1 :

3	5	6	9	2	5	6	4	7	2	12	7
5	6	7	3	8	9	2	5	4	7	5	6
6	7	3	6	10	3	1	7	3	6	3	8
7	7	3	5	1	7	4	9	3	8	3	9

We will use our calculators to find the mean.

Example:

How expensive is Maui? The Maui News gave the following costs in dollars per day for a random sample of condos on Maui.

$$
89,50,68,60,375,55,500,71,40,65,50,50
$$

a. Compute the mean.
b. Compute the median.
c. Compute the mode.
d. If you were a travel agent and a client asked you about the typical daily cost of a condo rental in Maui, what value would you give?

Section 2.6
Example: Recall this mound-shaped histogram:

Where is the Mean, Median, and Mode located?

Example: Recall this skewed right histogram:

Where is the Mean, Median, and Mode located?

Example: Recall this skewed left histogram:

Where is the Mean, Median, and Mode located?

Section 2.7

Example: Suppose that we have two data sets, call them data set A and data set B:

A:	10	20	30	40	50	60	70
B:	10	35	37	40	43	45	70

1. What is the range of each data set?
2. What is the variance of each data set?
3. What is the standard deviation of each data set?

Example: A school system employs teachers at salaries between $\$ 30000$ per year and $\$ 60000$ per year. The teachers' union and the school board are negotiating the form of next year's increase in the salary schedule.

Suppose that each teacher is given a flat $\$ 1000$ raise.

1. Will the mean salary change? If so, will it go up or down? Explain.
2. Will the median salary change? If so, will it go up or down? Explain.
3. Will the standard deviation of the salaries change? If so, will it go up or down? Explain.

Example: A school system employs teachers at salaries between $\$ 30000$ per year and $\$ 60000$ per year. The teachers' union and the school board are negotiating the form of next year's increase in the salary schedule.

Suppose that the teachers each receive a 5% raise. The amount of the raise will then vary from $\$ 1500$ to $\$ 3000$, depending on present salary.

1. Will the mean salary change? If so, will it go up or down? Explain.
2. Will the median salary change? If so, will it go up or down? Explain.
3. Will the standard deviation of the salaries change? If so, will it go up or down? Explain.

Example: One high school graduating class had an average GPA of 2.9 with a standard deviation of .4. Another high school graduating class had an average GPA of 3.1 with a standard deviation of .5. Two students applied for the same college, with the same GPA of 3.6. Which student did better relatively to their graduating classes?

