Jones

Name

Assume that a researcher randomly selects 14 newborn babies and counts the number of girls selected, x. The probabilities corresponding to the 14 possible values of x are summarized in the given table. Answer the question using the table.

Probabilities of Girls

x(girls)	P(x)	x(girls)	P(x)	x(girls)	P(x)
0	0.000	5	0.122	10	0.061
1	0.001	6	0.183	11	0.022
2	0.006	7	0.209	12	0.006
3	0.022	8	0.183	13	0.001
4	0.061	9	0.122	14	0.000

- 1) For each of the following write the correct probability notation and the correct calculator entry to use to get the answer without the above table. Probability notation = Calculator input = Probability
 - a) Find the probability of exactly 10 girls.
 - b) Find the probability of at most 4 girls.
 - c) Find the probability of at least 10 girls.
 - d) Find the probability of at least 12 girls.
 - e) What is the mean and standard deviation of this probability distribution?
 - f) Is it unusual to get at most 3 girls? Why?

Provide an appropriate response.

2) Suppose you pay \$1.00 to roll a fair die with the understanding that you will get back \$3.00 for rolling a 2 or a 6, nothing otherwise. What is your expected value?

Use the binomial distribution to find the desired probability.

- 3) Merta reports that 74% of its trains are on time. A communitiee group questions this parameter. In a random sample of 60 trains 38 of them arrived on time.
 - a) Use a binomial distribution to find the probability of getting a sample where among 60 trains, 38 or fewer arrive on time, if the overall ontime rate is 74%.
 - b) Based on the result, would you question if the "on-time" rate of 74% could be correct? Explain your result.

Determine if the outcome is unusual. Consider as unusual any result that differs from the mean by more than 2 standard deviations. That is, unusual values are either less than μ – 2σ or greater than μ + 2σ .

- 4) A survey it is determined that 68% of consumers avoid products that have excesive packaging. A survey of 700 randomly selected consumers is to be conducted.
 - a) For such groups of 700, would it be statistically significant to get 521 consumers who avoid products with excesive packaging?
 - b) Find the probability randomly selecting of at least 521 consumers out of 800 who avoid products with excesive packaging?